

Matrices and Determinants

Date Planned ://	Daily Tutorial Sheet-1	Expected Duration: 90 Min
Actual Date of Attempt : / /	Level-1	Exact Duration :

1. If
$$f = \begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ yz & zx & xy \end{vmatrix}$$
 and $g = (x - y)(y - z)(z - x)$, then $\frac{f}{g}$ is:

$$(A) \qquad xy + yz + zx$$

(B)
$$x^2 + y^2 + z^2$$

(C)
$$x^2 + y^2 + z^2 - xy - yz - zx$$

2. If
$$g(x) = \begin{vmatrix} a^{-x} & e^{x \log_e a} & x^2 \\ a^{-3x} & e^{3x \log_e a} & x^4 \\ a^{-5x} & e^{5x \log_e a} & 1 \end{vmatrix}$$
, then:

(A)
$$g(x) + g(-x) = 0$$

(B)
$$g(x) - g(-x) = 0$$

(C)
$$g(x) \times g(-x) = 0$$

3. If
$$x \neq 0, y \neq 0, z \neq 0$$
 and $\begin{vmatrix} 1+x & 1 & 1 \\ 1+y & 1+2y & 1 \\ 1+z & 1+z & 1+3z \end{vmatrix} = 0$, then $x^{-1} + y^{-1} + z^{-1}$ is equal to:

(D)
$$\frac{1}{3}$$

4. If
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r \end{bmatrix}$$
 then $A^3 - rA^2 - qA = qA$

*5. If
$$2x - y = \begin{bmatrix} 3 & -3 & 0 \\ 3 & 3 & 2 \end{bmatrix}$$
 and $2y + x = \begin{bmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{bmatrix}$, then:

(A)
$$x + y = \begin{bmatrix} 3 & 0 & 3 \\ 0 & 3 & -2 \end{bmatrix}$$

(B)
$$x = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$

(C)
$$x-y = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & 2 \end{bmatrix}$$

(D)
$$y = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 1 & -2 \end{bmatrix}$$

6. If
$$f(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 then $f(x+y)$ is equal to:

$$x)+f(y)$$

$$f(x) - f(y)$$

$$f(x) + f(y)$$
 (B) $f(x) - f(y)$ (C) $f(x) \cdot f(y)$ (D)

7. If
$$AB = 0$$
 where $A = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix}$ and $B = \begin{bmatrix} \cos^2 \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin^2 \phi \end{bmatrix}$ then $|\theta - \phi|$ is equal to:

(C)
$$\frac{\pi}{4}$$

8. If
$$A = \begin{bmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{bmatrix}$$
, $B = \begin{bmatrix} \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \\ \omega & \omega^2 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 \\ \omega \\ \omega^2 \end{bmatrix}$ where ω is the complex cube root of 1 then

(A+B)C is equal to:

$$(A) \qquad \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

(A)
$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (B) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ (D) $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

(D)
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

9. If
$$A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} a^2 & ab & ac \\ ba & b^2 & bc \\ ca & cb & c^2 \end{bmatrix}$ then AB is equal to:

- **(A)** O
- (C) 21
- (D) None of these

10. If
$$\begin{bmatrix} x+y & y \\ 2x & x-y \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \end{bmatrix}$$
 then $x \cdot y$ is equal to:

- (D) 6

11. If
$$a^{-1} + b^{-1} + c^{-1} = 0$$
 such that $\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = \lambda$ then the value of λ is:

- **(A)** 0

- (D) None of these

12. The value of '\(\lambda'\) if
$$ax^4 + bx^3 + cx^2 + 50x + d = \begin{vmatrix} x^3 - 14x^2 & -x & 3x + \lambda & 4x + 1 & 3x & x - 4 & -3 & 4 & 0 \end{vmatrix}$$
, is:

13. The values of
$$\theta$$
 lying between $\theta = 0$ and $\theta = \pi/2$ and satisfying the equation

$$\begin{vmatrix} 1+\sin^2\theta & \cos^2\theta & 4\sin 4\theta \\ \sin^2\theta & 1+\cos^2\theta & 4\sin 4\theta \\ \sin^2\theta & \cos^2\theta & 1+4\sin 4\theta \end{vmatrix} = 0 \text{ are given by :}$$

- (A) $\pi/24,5\pi/24$ (B) $7\pi/24,11\pi/24$ (C) $5\pi/24,7\pi/24$ (D) $11\pi/24,\pi/24$

14. If
$$f(x) = \begin{vmatrix} 1-x & -1 & 0 \\ 2 & 3-x & 1 \\ 4 & -2 & 5-x \end{vmatrix}$$
, number of real roots of $f(x) = 0$ is _____.

- **(A)** 1
- **(B)** 0
- (C)
- (D)

15. If
$$A = \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix}$$
, $B = \begin{bmatrix} \cos^2 \phi & \sin \phi \cos \phi \\ \sin \phi \cos \phi & \sin^2 \phi \end{bmatrix}$ and θ and ϕ differs by $\frac{\pi}{2}$, then $AB = \sin \theta \cos \phi$.

- (A)

- (D) None of these

Date Planned ://	Daily Tutorial Sheet-2	Expected Duration: 90 Min
Actual Date of Attempt ://	Level-1	Exact Duration :

16.
$$\begin{vmatrix} 1+i & 1-i & i \\ 1-i & i & 1+i \\ i & 1+i & 1-i \end{vmatrix} =$$

(B) 4 + 7*i* **(C)** 3 + 7*i*

(D) 7 + 4i

If ω is a cube root of unity, then $\begin{vmatrix} x+1 & \omega & \omega^2 \\ \omega & x+\omega^2 & 1 \\ \omega^2 & 1 & x+\omega \end{vmatrix} =$

 $x^{3} + \omega$ (C) $x^{3} + \omega^{2}$

 x^3

If $\begin{vmatrix} y+z & x & y \\ z+x & z & x \\ x+y & y & z \end{vmatrix} = k(x+y+z)(x-z)^2$, then k=

2xyz **(B)** 1 **(C)** xyz **(D)**

If – 9 is a root of the equation $\begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix} = 0$ then the other two roots are : 19.

(A) 2, 7

(B) - 2, 7 **(C)** 2, -7

(D) - 2, -7

If $A = \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{bmatrix}$, $C = \begin{bmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{bmatrix}$, then which relation is correct : 20.

None of these

(A) $a^3 + b^3 + c^3 - 3abc$ (B) $3abc - a^3 - b^3 - c^3$ (C) $a^3 + b^3 + c^3 - a^2b - b^2c - c^2a$ (D) $(a+b+c)(a^2+b^2+c^2+ab+bc+ca)$

If ω is a cube root of unity and $\Delta = \begin{vmatrix} 1 & 2\omega \\ \omega & \omega^2 \end{vmatrix}$, then Δ^2 is equal to : 22.

(A)

ac

If $\Delta_1 = \begin{vmatrix} 1 & 0 \\ a & b \end{vmatrix}$ and $\Delta_2 = \begin{vmatrix} 1 & 0 \\ c & d \end{vmatrix}$, then $\Delta_2 \Delta_1$ is equal to:

(B)

(A)

bd

(C) (b-a)(d-c) (D) None of these

- For the matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}$, which of the following is correct: 24.
 - (A) $A^3 + 3A^2 I = 0$

(B) $A^3 - 3A^2 - I = 0$

(C) $A^3 + 2A^2 - I = 0$

- **(D)** $A^3 A^2 + I = 0$
- If $A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$, $B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ and $(A + B)^2 = A^2 + B^2$, then the value of a and b are:
 - **(A)** a = 4, b = 1 **(B)** a = 1, b = 4
- (C)

- If $A = \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix}$, then $A^2 5A =$
- **(B)** 14 *I*
- **(C)** 0
- (D) None of these

- If matrix $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, then $A^{16} =$ 27.
 - (A) $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ (B) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (C) $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

- If $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, then $A^{100} =$ 28.
 - **(A)** $2^{100}A$ **(B)** $2^{99}A$
- (C) $2^{101}A$
- (D) None of these

- If $A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$, then $A^n = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$
 - (A) $\begin{bmatrix} na & 0 & 0 \\ 0 & nb & 0 \\ 0 & 0 & nc \end{bmatrix}$ (B) $\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$ (C) $\begin{bmatrix} a^n & 0 & 0 \\ 0 & b^n & 0 \\ 0 & 0 & c^n \end{bmatrix}$ (D) None of these

- The matrix $\begin{bmatrix} 2 & \lambda & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ is non singular, if :
 - (A) $\lambda \neq -2$

- **(B)** $\lambda \neq 2$ **(C)** $\lambda \neq 3$ **(D)** $\lambda \neq -3$

Date Planned ://	Daily Tutorial Sheet-3	Expected Duration: 90 Min
Actual Date of Attempt : / /	Level-1	Exact Duration :

- $\begin{vmatrix} x^2 + x & x + 1 & x 2 \\ 2x^2 + 3x 1 & 3x & 3x 3 \\ x^2 + 2x + 3 & 2x 1 & 2x 1 \end{vmatrix} = Ax + B$. Then A + 2B is equal to:
- (C)
- If f(x)g(x) and h(x) are three polynomials of degree 3 then $\phi(x) = \begin{vmatrix} f'(x) & g'(x) & h'(x) \\ f''(x) & g''(x) & h''(x) \\ f'''(x) & g'''(x) & h'''(x) \end{vmatrix}$ is a 32.

polynomial of degree:

- (C)
- (D) None of these
- If $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then which one of the following holds for all $n \ge 1$. 33.
 - (A) $A^n = 2^{n-1}A + (n-1)I$
- **(B)** $A^n = nA + (n-1)I$
- (C) $A^n = 2^{n-1}A (n-1)I$
- **(D)** $A^n = nA (n-1)I$
- A square matrix P satisfies $P^2 = I P$, where I is the identity matrix. If $P^n = 5I 8P$, then n is equal to: 34.

- If $3A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ x & 2 & y \end{bmatrix}$ and $AA^T = I$. Then x + y is equal to: 35.
 - **(A)** -3
- (C)
- (D)

- Let $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$, then
 - (A) $A^2 4A 5I_3 = 0$

- **(B)** $A^{-1} = \frac{1}{5}(A 4I_3)$
- (C) A^3 is not invertible

- **(D)** A^2 is invertible
- If $P = \begin{vmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{vmatrix}$, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $Q = PAP^T$, then $P^T(Q^{2005})P$ is equal to:
- (A) $\begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$ (B) $\begin{bmatrix} \frac{\sqrt{3}}{2} & 2005 \\ 1 & 0 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 2005 \\ \frac{\sqrt{3}}{2} & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & \frac{\sqrt{3}}{2} \\ 0 & 2005 \end{bmatrix}$
- If $A + B + C = \pi$, $e^{i\theta} = \cos \theta + i \sin \theta$ and $z = \begin{vmatrix} e^{2iA} & e^{-iC} & e^{-iB} \\ e^{-iC} & e^{2iB} & e^{-iA} \\ e^{-iB} & e^{-iA} & e^{-2iC} \end{vmatrix}$, then: *38.
 - (A) Re(z) = 4
- (B)
- $\operatorname{Im}(z) = 0$
- Re(z) = -4(C)
- **(D)** Im(z) = 1

39. The value of
$$\begin{vmatrix} 1 & 1 & 1 \\ (2^{x} + 2^{-x})^{2} & (3^{x} + 3^{-x})^{2} & (5^{x} + 5^{-x})^{2} \\ (2^{x} - 2^{-x})^{2} & (3^{x} - 3^{-x})^{2} & (5^{x} - 5^{-x})^{2} \end{vmatrix}$$
 is:

- (A)
- 30^{-x}
- (D) None of these

40. If
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0 \end{bmatrix}$$
, $B = (adj A)$ and $C = 5A$, then $\frac{|adj B|}{|C|}$ is equal to:

- (A)
- (B)
- **(C)** -1
- (D)

41. If
$$a,b,c$$
, are in A.P. and $f(x) = \begin{vmatrix} x+a & x^2+1 & 1 \\ x+b & 2x^2-1 & 1 \\ x+c & 3x^2-2 & 1 \end{vmatrix}$, then $f'(x)$ is:

- (A) 0
- (B)

*42. The value of x for which
$$\begin{vmatrix} x & 2 & 2 \\ 3 & x & 2 \\ 3 & 3 & x \end{vmatrix} + \begin{vmatrix} 1-x & 2 & 4 \\ 2 & 4-x & 8 \\ 4 & 8 & 16-x \end{vmatrix} > 33$$
 is:

- 0 < x < 1 (B) $-\frac{1}{2} < x < \frac{1}{2}$ (C) $x < -\frac{1}{7}$ (D) x > 1

*43. Let
$$f(n) = \begin{vmatrix} n & n+1 & n+2 \\ nP_n & n+1P_{n+1} & n+2P_{n+2} \\ nC_n & n+1C_{n+1} & n+2C_{n+2} \end{vmatrix}$$
 where the symbols have their usual meanings. Then $f(n)$ is

divisible by:

- (A) $n^2 + n + 1$ (B) (n+1)! (C) n!
- (D) None of these

44. If
$$\Delta = \begin{vmatrix} f(x) & f\left(\frac{1}{x}\right) + f(x) \\ 1 & f\left(\frac{1}{x}\right) \end{vmatrix} = 0$$
 where, $f(x) = a + bx^n$ and $f(2) = 17$, then $f(5)$ is:

- (B) 326
- (C) 428
- (D) 626

45. The value of
$$x$$
, so that $\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 0 & 5 & 1 \\ 0 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ x \end{bmatrix} = 0$, is:

- (A) $\frac{-7 \pm \sqrt{35}}{2}$ (B) $\frac{-9 \pm \sqrt{53}}{2}$ (C) ± 2
- 0

Date Planned ://	Daily Tutorial Sheet-4	Expected Duration: 90 Min
Actual Date of Attempt : / /	Level-1	Exact Duration :

Paragraph for Questions 46 to 48

Elementary Transformation of a matrix:

The following operation on a matrix are called elementary operations (transformations)

- 1. The interchange of any two rows (or columns)
- 2. The multiplication of the elements of any row (or column) by any nonzero number
- 3. The addition to the elements of any row (or column) the corresponding elements of any other row (or column) multiplied by any number

Echelon Form of matrix:

A matrix A is said to be in echelon form if

- (i) every row of A which has all its elements 0, occurs below row, which has a non-zero elements
- (ii) the first non-zero element in each non -zero row is 1.
- (iii) The number of zeros before the first non zero elements in a row is less than the number of such zeros in the next now.

[A row of a matrix is said to be a zero row if all its elements are zero]

Note: Rank of a matrix does not change by application of any elementary operations

For example
$$\begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$
, $\begin{bmatrix} 1 & 1 & 3 & 6 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ are echelon forms

The number of non-zero rows in the echelon form of a matrix is defined as its RANK.

For example we can reduce the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \end{bmatrix}$ into echelon form using following elementary row

transformation.

(i)
$$R_2 \to R_2 - 2R_1 \text{ and } R_3 \to R_3 - 3R_1 \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

(ii)
$$R_2 \rightarrow R_2 - 2R_1 \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

This is the echelon form of matrix A

Number of nonzero rows in the echelon form =2 ⇒ Rank of the matrix A is 2

46. Rank of the matrix
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 3 & 1 & 1 \end{bmatrix}$$
 is :

- **(A)** 1
- (B)
- **(C)** 3
- **(D)** 0

47. Rank of the matrix
$$\begin{bmatrix} 1 & 1 & 1 & -1 \\ 1 & 2 & 4 & 4 \\ 3 & 4 & 5 & 2 \end{bmatrix}$$
 is:

- (A)
- (B)
- (C) 3
- (D) 4

48. The echelon form of the matrix $\begin{bmatrix} 1 & 3 & 4 & 3 \\ 3 & 9 & 12 & 9 \\ 1 & 3 & 4 & 1 \end{bmatrix}$ is :

(A)
$$\begin{bmatrix} 1 & 3 & 4 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 (B) $\begin{bmatrix} 1 & 2 & 4 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 3 & 4 & 3 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 3 & 4 & -\frac{3}{2} \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

- 49. The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ \lambda & 2 & 4 \\ 2 & -3 & 1 \end{bmatrix}$ is 3 if :
 - (A) $\lambda \neq \frac{18}{11}$ (B) $\lambda = \frac{18}{11}$ (C) $\lambda = -\frac{18}{11}$ (D) None of these
- 50. The rank of $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$ is equal to : (A) 1 (B) 2 (C) 3 (D) None of these
- **51.** If 3, 2 are the Eigen values of a non-singular matrix A and |A| = 4, then the Eigen values of adj(A) are:
 - (A) $\frac{3}{4}$, $\frac{-1}{2}$ (B) $\frac{4}{3}$, -2 (C) 12, -8 (D) -12, 8
- 52. Let p a non singular matrix $1 + P + P^2 + \dots + P^n = O$. (O denotes the null matrix), then $P^{-1} = O$. (O denotes the null matrix), then O (O denotes the null matrix). None of these
- 53. If $P = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ -2 & 0 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} -4 & -5 & -6 \\ 0 & 0 & 1 \end{bmatrix}$ then $P_{22} = 0$
- [3 4 5] [0 -4] [0 0 1] **(A)** 40 **(B)** -40 **(C)** -20 **(D)** 20
- **54.** If $1, \omega, \omega^2$ are the cube roots of unity, then $\Delta = \begin{bmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^n & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^n \end{bmatrix}$ is equal to :
- (A) 0 (B) 1 (C) ω (D) ω^2
- **55.** Let *P* be a non-singular matrix $I + P + P^2 + ... + P^n = O$ (O denotes the null matrix), then P^{-1} is:
 - (A) P^{n} (B) $-P^{n}$ (C) $-(I+P+...+P^{n})$ (D) None of these

- **56.** If D = diagonal $[d_1, d_2, d_3, ..., d_n]$ where $d_i \neq 0 \forall i = 1, 2, 3, ..., n$ then D^{-1} is equal to :
 - **(A)**

- **B)** In
- (C) diagonal $(d_1^{-1}, d_2^{-1}, ..., d_n^{-1})$
- (D) None of above
- 57. Let A be an orthogonal non-singular matrix of order n, then $|A I_n|$ is equal to :
 - (A) $I_n A$
- **B)** | A
- **(C)** |A|
- $|A||I_n A|$ (D) $(-1)^n |A||I_n A|$
- **58.** 'A' is any square matrix, then det $|A A^T|$ is equal to :
 - **(A)**

- (B)
- (C) can be 0 or a perfect square
- (D) cannot be determined
- **59.** In a $\triangle ABC$, if $\begin{vmatrix} 1 & a & b \\ 1 & c & a \\ 1 & b & c \end{vmatrix} = 0$, then $\sin^2 A + \sin^2 B + \sin^2 C$ is equal to :
 - (A) $\frac{9}{4}$
- $\mathbf{B)} \qquad \frac{4}{3}$
- (C)
- **(D)** $3\sqrt{3}$
- **60.** If a,b,c are the sides of a $\triangle ABC$ opposite angle A,B,C respectively, then

$$\Delta = \begin{vmatrix} a^2 & b \sin A & c \sin A \\ b \sin A & 1 & \cos(B - C) \\ c \sin A & \cos(B - C) & 1 \end{vmatrix}$$
 equals :

(A) $\sin A - \sin C \sin B$

(B) abc

(C)

(D) 0

Date Planned ://	Daily Tutorial Sheet-5	Expected Duration: 90 Min
Actual Date of Attempt : / /	Level-1	Exact Duration :

Paragraph for Questions 61 to 63

Consider the determinant, $\Delta = \begin{vmatrix} p & q & r \\ x & y & z \\ l & m & n \end{vmatrix}$

 M_{ii} denotes the minor of an element in i^{th} row, and j^{th} column

 C_{ij} denotes the cofactor of an element in i^{th} row and j^{th} column

61. The value of $p \cdot C_{21} + q \cdot C_{22} + r \cdot C_{23}$ is :

(C)

The value of $x \cdot C_{21} + y \cdot C_{22} + z \cdot C_{23}$ is : 62.

(B)

(C)

The value of $q \cdot M_{12} - y \cdot M_{22} + m \cdot M_{32}$ is: 63.

(C)

A and B are square matrices and A is non-singular matrix, $(A^{-1}BA)^n$, $n \in I^+$, is equal to: 64.

(A)

(C)

 $A^{-1}B^{n}A$

(D)

The value of a,b,c when $\begin{bmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{bmatrix}$ is orthogonal, are : 65.

(A) $\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{6}}, \pm \frac{1}{\sqrt{2}}$ (B) $\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{6}}$ (C) $\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{6}} \pm \frac{1}{\sqrt{3}}$ (D) $\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}} \pm \frac{1}{\sqrt{2}}$

66. The equations 2x + y = 5, x + 3y = 5, x - 2y = 0 have:

(A)

no solution

(B) one solution

(C)

two solutions (D) infinitely many solutions

Passage for Question 67 to 70

Consider a system of linear equation in three variables x, y, z

 $a_1x + b_1y + c_1z = d_1$; $a_2x + b_2y + c_2z = d_2$; $a_3x + b_3y + c_3z = d_3$

The system can be expressed by matrix equation $\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$

- if A is non-singular matrix then the solution of above system can be found by $X = A^{-1}B$, the solution in this case is unique.
- if A is a singular matrix i.e. |A| = 0, then the system will have
- no unique solution if (Adj A)B = 0
- no solution (i.e. it is inconsistent) if $(Adj A)B \neq 0$

Where Adj A is the adjoint of the matrix A, which is obtained by taking transpose of the matrix obtained by replacing each element of matrix A with corresponding cofactors.

Now consider the following matrix.

$$A = \begin{bmatrix} a & 1 & 0 \\ 1 & b & d \\ 1 & b & c \end{bmatrix}, B = \begin{bmatrix} a & 1 & 1 \\ 0 & d & c \\ f & g & h \end{bmatrix}, U = \begin{bmatrix} f \\ g \\ h \end{bmatrix}, V = \begin{bmatrix} a^2 \\ 0 \\ 0 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

67.	The sy	stem $AX = U$ has	as infini	tely many s	olution if:					
	(A)	c = d, ab = 1	(B)	c = d, h =	g (C)	ab = 1	1,h=g	(D)	c = d, h = g, ab = 1	
68.	If AX	= U has infinite	ly many	solutions th	nen the eq	uation <i>BX</i>	= V has	:		
	(A) (C)	unique solutio no solution	n		(B) (D)		ely many infinitely		on solutions or no solutio	n
*69.	If AX	= U has infinite	ly many	solutions th	nen the eq	uation <i>BX</i>	= V is co	onsister	nt if	
	(A)	a = 0	(B)	d = 0	(C)	f = 0		(D)	adf ≠ 0	
*70.	Consid	der the following	stateme	ents:						
	A:	if $AX = U$; has	s infinite	e solutions a	and $cf \neq 0$, then one	solution	of BX	= V is (0,0,0)	
	R:	if a system has						ial. The	n	
	(A)	A and R are bo								
	(B)	A and R both a			not correc	t explanatio	on of A			
	(C) (D)	A is correct R i A and R are bo	_							
		_								
71.		• •	0		umber of so	olutions of	the syste	m of eq	uations $3x - y + 4z = 3$	3,
		-3z = -2, 6x +			(0)			(5)		
	(A)	one	(B)	Two	(C)			(D)	infinite	
72.	The se	t of equations λ.	x-y+(c	$\cos\theta\big)z=0\;;$	3x + y + 2	z = 0; (cos	$(\theta)x + y +$	2z = 0	; $0 \le \theta < 2\pi$, has	
	non-tr (A) (C) (D)	ivial solutions. for no value of for all values o For only one va	of λ and	only two va		for all	value of	λ and	θ	
*73.	Let ∆($x) = \begin{vmatrix} x+a & x+b \\ x+b & x+c \\ x+c & x+c \end{vmatrix}$	$ \begin{array}{ccc} x + a \\ x - b \end{array} $	$\begin{vmatrix} -c \\ 1 \\ +d \end{vmatrix}$ and $\int_{0}^{2} dx$	$\Delta(x)dx = -$	-16 where	a, b, c, d	are in A	AP, then the common	
	differe	nce of the AP is:								
	(A)	1	(B)	2	(C)	-2		(D)	None of these	
*74.	,	$\{1,\Delta_2,\Delta_3,,\Delta_k\}$ by $\{1,\Delta_2,\Delta_3,,\Delta_k\}$			rder deterr	ninants tha	at can be	made v	vith the distinct nonzer	.0
	(A)	k = 9!			(B)	$\sum_{i=1}^{k} \Delta_{i}$	_i = 0			
	(C)	at least one Δ_i	= 0		(D)		of these			
75 .	If a ≠	$p,b \neq q,c \neq r$ and	d the sys	stem of equa	ations <i>px</i> -	+by+cz=0	0 , $ax + q$	y + cz =	0 , ax + by + rz = 0	
	has a ı	non-zero solutio	n, then v	value of $\frac{p}{p}$	$\frac{d}{da} + \frac{q}{q - b}$	$+\frac{r}{r-c}$ is:				
	(A)	-1	(B)	-2	(C)	1		(D)	2	

Date Planned ://	Daily Tutorial Sheet-6	Expected Duration: 90 Min
Actual Date of Attempt : / /	Level-1	Exact Duration :

76. If $\Delta_1 = \begin{vmatrix} x & b & b \\ a & x & b \\ a & a & x \end{vmatrix}$ and $\Delta_2 = \begin{vmatrix} x & b \\ a & x \end{vmatrix}$ are the given determinants, then:

(A)
$$\Delta_1 = 3(\Delta_2)^2$$
 (B) $\frac{d}{dx}(\Delta_1) = 3\Delta_2$ (C) $\frac{d}{dx}(\Delta_1) = 2(\Delta_2)^2$ (D) $\Delta_1 = 3\Delta_2^{3/2}$

77. In the determinant $\begin{vmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ 2 & -3 & 0 \end{vmatrix}$, the ratio of the co-factor to its minor of the element -3 is :

(A)	-1	(B)	0	(C)	1	(D)	2

78. If value of a third order determinant is 11, then the value of the square of the determinant formed by the cofactors will be:

Consider the system of linear equations $a_1x+b_1y+c_1z+d_1=0$, $a_2x+b_2y+c_2z+d_2=0$ and $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}.$ If $\Delta(a,b,c)\neq 0$, then

the value of x in the unique solution of the above equations is :

(A)
$$\frac{\Delta \left(bcd\right)}{\Delta \left(abc\right)}$$
 (B) $\frac{-\Delta \left(bcd\right)}{\Delta \left(abc\right)}$ (C) $\frac{\Delta \left(acd\right)}{\Delta \left(abc\right)}$ (D) $-\frac{\Delta \left(abd\right)}{\Delta \left(abc\right)}$

80. The value of the determinant | 10! 11! 12! | 13! is: | 12! 13! 14! |

(A)
$$2(10!11!)$$
 (B) $2(10!13!)$ (C) $2(10!11!12!)$ (D) $2(11!12!13!)$ $\begin{vmatrix} 1 & 3 & 5 & 1 \\ 2 & 3 & 4 & 2 \end{vmatrix}$

81. The cofactor of the element '4' in the determinant $\begin{vmatrix} 1 & 3 & 5 & 1 \\ 2 & 3 & 4 & 2 \\ 8 & 0 & 1 & 1 \\ 0 & 2 & 1 & 1 \end{vmatrix}$ is:

82. If $\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ and A_1, B_1, C_1 denote the co-factors of a_1, b_1, c_1 respectively, then the value of the

(A)
$$\Delta$$
 (B) Δ^2 (C) Δ^3 (D) 0

If in the determinant $\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$, A_1, B_1, C_1 etc. be the co-factors of a_1, b_1, c_1 etc., then which of the 83.

following relations is incorrect:

(A)
$$a_1 A_1 + b_1 B_1 + c_1 C_1 = \Delta$$

(B)
$$a_2A_2 + b_2B_2 + c_2C_2 = \Delta$$

(C)
$$a_3A_3 + b_3B_3 + c_3C_3 = \Delta$$

(D)
$$a_1 A_2 + b_1 B_2 + c_1 C_2 = \Delta$$

84. If A_1, B_1, C_1, \ldots are respectively the co-factors of the elements a_1, b_1, c_1, \ldots of the determinant

$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}, \text{ then } \begin{vmatrix} B_2 & C_2 \\ B_3 & C_3 \end{vmatrix} =$$

(A)
$$a_1\Delta$$

B)
$$a_1 a_3 a_4$$

(B)
$$a_1 a_3 \Delta$$
 (C) $(a_1 + b_1) \Delta$ **(D)**

- None of these
- Let $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{n \times n}$ be a square matrix and let c_{ij} be cofactor of a_{ij} in A. If $C = \begin{bmatrix} c_{ij} \end{bmatrix}$, then : 85.

(A)
$$|C| = |A|$$

$$|C| = |A|$$
 (B) $|C| = |A|^{n-1}$ **(C)** $|C| = |A|^{n-2}$

$$|C| = |A|^{n-2}$$

None of these

86.
$$x + ky - z = 0,3x - ky - z = 0$$
 and $x - 3y + z = 0$ has non-zero solution for $k = 0$

87. The number of solutions of equations
$$x + y - z = 0$$
, $3x - y - z = 0$, $x - 3y + z = 0$ is:

Infinite

88. If
$$x+y-z=0$$
, $3x-\alpha y-3z=0$, $x-3y+z=0$ has non zero solution, then $\alpha=$

89. If
$$\Delta(x) = \begin{vmatrix} x^n & \sin x & \cos x \\ n! & \sin \frac{n\pi}{2} & \cos \frac{n\pi}{2} \\ a & a^2 & a^3 \end{vmatrix}$$
, then the value of $\frac{d^n}{dx^n} \Big[\Delta(x) \Big]$ at $x = 0$ is :

90. The inverse of
$$\begin{bmatrix} 3 & 5 & 7 \\ 2 & -3 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
 is :

(A)
$$\begin{bmatrix} 7 & 3 & -26 \\ 3 & 1 & -11 \\ -5 & -2 & 0 \end{bmatrix}$$
 (B)
$$\begin{bmatrix} 7 & 3 & -26 \\ 3 & 1 & 11 \\ -5 & -2 & 1 \end{bmatrix}$$
 (C)
$$\begin{bmatrix} 3 & 1 & 11 \\ 7 & 3 & -26 \\ -5 & 2 & 1 \end{bmatrix}$$
 (D) None of these

$$\begin{bmatrix} 3 & 1 & 11 \\ 7 & 3 & -26 \\ -5 & 2 & 1 \end{bmatrix}$$

Matrices and Determinants

Date Planned ://	Daily Tutorial Sheet-7	Expected Duration: 90 Min
Actual Date of Attempt ://	Level-2	Exact Duration :

- *91. Let A and B be two nonsingular square matrices, A^T and B^T are the transpose matrices of A and B, respectively, then which of the following are correct?
 - (A) $B^T A B$ is symmetric matrix if A is symmetric
 - **(B)** $B^T AB$ is symmetric matrix if B is symmetric
 - (C) $B^T AB$ is skew-symmetric matrix for every matrix A
 - **(D)** $B^T AB$ is skew-symmetric matrix if A is skew-symmetric
- *92. If $A(\theta) = \begin{bmatrix} \sin \theta & i \cos \theta \\ i \cos \theta & \sin \theta \end{bmatrix}$, then which of the following is not true?
 - (A) $A(\theta)^{-1} = A(\pi \theta)$

- **(B)** $A(\theta) + A(\pi + \theta)$ is a null matrix
- (C) $A(\theta)$ is invertible for all $\theta \in R$
- **(D)** $A(\theta)^{-1} = A(-\theta)$

- *93. If $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$, then:
 - (A) adj(adj)A = A
 - adj(adj)A = A **(B)** ladj(adj A) | = 1 **(C)**
- *ladj A* | =1
- (D) None of these

- *94. If $A^{-1} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & -1/3 \end{bmatrix}$, then:
 - **(A)** | A | = -1

- **(B)** adj $A = \begin{bmatrix} -1 & 1 & -2 \\ 0 & -3 & -1 \\ 0 & 0 & 1/3 \end{bmatrix}$
- (C) $A = \begin{bmatrix} 1 & 1/3 & 7 \\ 0 & 1/3 & 1 \\ 0 & 0 & -3 \end{bmatrix}$
- (D) $A = \begin{bmatrix} 1 & -1/3 & -7 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- ***95.** Which of the following statements is/are true about square matrix A of order n?

- (A) $(-A)^{-1}$ is equal to $-A^{-1}$ which *n* is odd only
- **(B)** If $A^n = 0$, then $I + A + A^2 + \dots + A^{n-1} = (I A)^{-1}$
- (C) If A is skew-symmetric matrix of odd order, then its inverse does not exist.
- **(D)** $(A^T)^{-1} = (A^{-1})^T$ holds always

- *96. If A, B and C are three square matrices of the same order, then $AB = AC \Rightarrow B = C$. Then:
 - **(A)** $|A| \neq 0$

(B) A is invertible

(C) A may be orthogonal

- **(D)** A is symmetric
- *97. Suppose $a_1, a_2,...$ are real numbers, with $a_1 \neq 0$. If $a_1, a_2, a_3,...$ are in A.P., then:
 - (A) $A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_5 & a_6 & a_7 \end{bmatrix}$ is singular (where $i = \sqrt{-1}$)
 - (B) the system of equations $a_1x + a_2y + a_3z = 0$, $a_4x + a_5y + a_6z = 0$, $a_7x + a_8y + a_9z = 0$ has infinite number of solutions
 - (C) $B = \begin{bmatrix} a_1 & ia_2 \\ ia_2 & a_1 \end{bmatrix}$ is nonsingular
 - (D) None of these
- *98. Let $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$. Then which of following is not true?

- (A) $\lim_{n \to \infty} \frac{1}{n^2} A^{-n} = \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}$
- **(B)** $\lim_{n\to\infty} \frac{1}{n} A^{-n} = \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}$
- (C) $A^{-n} = \begin{bmatrix} 1 & 0 \\ -n & 1 \end{bmatrix} \forall n \neq N$
- (D) None of these
- *99. If C is skew-symmetric matrix of order n and X is $n \times 1$ column matrix, then X^TCX is:
 - (A) singular
- (B) non-singular
- (C) invertible
- (D) non-invertible
- *100. If $S = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ and $A = \begin{bmatrix} b+c & c+a & b-c \\ c-b & c+b & a-b \\ b-c & a-c & a+b \end{bmatrix}$ (a, b, $c \neq 0$), then SAS^{-1} is:
 - (A) symmetric matrix

(B) diagonal matrix

(C) invertible matrix

(D) singular matrix

Date Planned ://	Daily Tutorial Sheet-8	Expected Duration: 90 Min
Actual Date of Attempt : / /	Level-2	Exact Duration :

*101. If AB = A and BA = B, then:

(A)
$$A^2B = A^2$$

$$A^2B = A^2$$
 (B) $B^2A = B^2$

(C)
$$ABA = A$$

(D)
$$BAB = B$$

Let K be a positive real number and 102.

$$A = \begin{bmatrix} 2k - 1 & 2\sqrt{k} & 2\sqrt{k} \\ 2\sqrt{k} & 1 & -2k \\ -2\sqrt{k} & 2k & -1 \end{bmatrix} \text{ and } \begin{bmatrix} 0 & 2k - 1 & \sqrt{k} \\ 1 - 2k & 0 & 2 \\ -\sqrt{k} & -2\sqrt{k} & 0 \end{bmatrix}$$

If det $(adj A) + det(adj B) = 10^6$, then $\lceil k \rceil$ is equal to _____

*103. Let $A = a_{ij}$ be a matrix of order 3, where $a_{ij} = \begin{cases} x; & \text{if } i = j, x \in R \\ 1; & \text{if } |i - j| = 1; \text{ then which of the following hold(s)} \\ 0; & \text{otherwise} \end{cases}$

good:

- (A) for x = 2, A is a diagonal matrix
- A is a symmetric matrix (B)
- (C) for x = 2, det A has the value equal to 6
- (D) Let $f(x) = \det A$, then the function f(x) has both the maxima and minima

Let M and N be two 3×3 nonsingular skew-symmetric matrices such that MN = NM. If P^T denotes the 104. transpose of *P*, then $M^2N^2(M^TN)^{-1}(MN^{-1})^T$ is equal to :

(B)
$$-N^2$$

(C)
$$-M^2$$

*105. For 3×3 matrices M and N, which of the following statements (s) is (are) NOT correct ?

- $N^{T}MN$ is symmetric or skew-symmetric, according as M is symmetric or skew-symmetric (A)
- (B) MN – NM is skew-symmetric for all symmetric matrices M and N
- (C) MN is symmetric for all symmetric matrices M And N
- (D) (adj M)(adj N) = adj(MN) for all invertible matrices M and N

Let $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{2\times 2}$ be a matrix such that $AA^T = 4I$ and $a_{ij} + 2c_{ij} = 0$, where c_{ij} is the cofactor of a_{ij} and I106.

is the unit matrix of order 3. $\begin{vmatrix} a_{11} + 4 & a_{12} & a_{13} \\ a_{21} & a_{22} + 4 & a_{23} \\ a_{31} & a_{32} & a_{33} + 4 \end{vmatrix} + 5\lambda \begin{vmatrix} a_{11} + 1 & a_{12} & a_{13} \\ a_{21} & a_{22} + 1 & a_{23} \\ a_{31} & a_{32} & a_{33} + 1 \end{vmatrix} = 0$ then the value of

10 λ is ____.

- *107. Let A and B be two nonsingular square matrices, A^T and B^T are the transpose matrices of A and B, respectively, then which of the following are correct?
 - (A) $B^T AB$ is symmetric matrix if A is symmetric
 - **(B)** $B^T AB$ is symmetric matrix if B is symmetric
 - (C) $B^T AB$ is skew-symmetric matrix for every matrix A
 - **(D)** $B^T AB$ is skew-symmetric matrix If A is skew-symmetric
- **108.** If A is a symmetric and B skew-symmetric matrix and A + B is nonsingular and $C = (A + B)^{-1}(A B)$, then prove that :
 - (i) $C^{T}(A+B)C = A+B$ (ii) $C^{T}(A-B)C = A-B$ (iii) $C^{T}AC = A$
- **109.** If $A = \begin{bmatrix} \csc^2 \alpha & 0 & 0 \\ 0 & \csc^2 \beta & 0 \\ 0 & 0 & \csc^2 \gamma \end{bmatrix}$ and $B = \begin{bmatrix} \sec^2 \alpha & 0 & 0 \\ 0 & \sec^2 \beta & 0 \\ 0 & 0 & \sec^2 \gamma \end{bmatrix}$ where $\alpha, \beta, \gamma \in R \left\{ n \frac{\pi}{2} : n \in I \right\}$ and $C = \left(A^{-5} + B^{-5} \right) + 5A^{-1}B^{-1} \left(A^{-3} + B^{-3} \right) + 10\left(A^{-1} + B^{-1} \right) A^{-2}B^{-2}$ (where $X^{-n} = (X^{-1})^n$, then |C| = 1)
 - (A) 0 (B) 1 (C) 2 (D) 4
- *110. Matrix $A = \begin{bmatrix} a & -b & 0 \\ c & 0 & b \\ 0 & -c & -a \end{bmatrix}$ then:
 - (A) $A^9 = (a^2 2bc)^3 A$

- **(B)** $A^9 = (a^2 2bc)^4 A$
- (C) $A^2 + (2bc a^2)I_3 = 0$
- **(D)** $|A^2 + (a^2 2bc)I_3| = 0$

Date Planned ://	Daily Tutorial Sheet-9	Expected Duration: 90 Min
Actual Date of Attempt : / /	Level-2	Exact Duration :

- *111. A is even ordered non singular symmetric matrix and B is even ordered non singular skew symmetric matrix such that AB = BA, then $A^3B^3\left(B'A\right)^{-1}\left(A^{-1}B^{-1}\right)'$ AB is equal to :
 - (A) A^2B^2 (B) B^2A^2 (C) $-A^2B^2$ (D) $-B^2A^2$
- *112. Let P be a 3×3 matrix such that $P^T = \lambda P + \mu I$, λ , $\mu \in R$, where $\lambda \neq \pm 1$, $\mu \neq 0$ and P^T denotes transpose of matrix P then :
 - (A) P is singular matrix (B) P is non singular matrix
 - (C) $P \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$ have a unique solution (D) trace of $P = \frac{\mu}{1 \lambda}$
- *113. Let M and N be two 3 × 3 matrices such that MN = NM, $M^3 = N^6$ and $M \neq N^2$ then:
 - (A) $M^2N^2 + M^3 + MN^4 = 0$
 - (B) There exist a non zero 3 ×1 matrix U such that $\left(M^2N^2 + M^3 + MN^4\right)U$ is a zero matrix
 - (C) $M^2N^2 + M^3 + MN^4 \ge 1$
 - (D) For a 3 × 1 matrix U such that $(M^2N^2 + M^3 + MN^4)U$ is a zero matrix then U is a zero matrix
- *114. Consider the system of equations 3x y + 4z = 3, x + 2y 3z = -2, $6x + 5y + \lambda z = -3$, then for $\lambda = -5$:
 - (A) system has no solution
 - **(B)** system has infinitely many solutions lying on a line $\frac{7x-4}{-5} = \frac{7y+9}{13} = z$
 - (C) system has infinitely many solutions lying on a line $\frac{7x+1}{-5} = \frac{7y-4}{13} = \frac{z-1}{1}$
 - (D) system has infinitely many solutions representing a plane
- **115.** Suppose $a,b,c \in R$ and abc = 1. If $A = \begin{pmatrix} 2a & b & c \\ b & 2c & a \\ c & a & 2b \end{pmatrix}$ such that $A'A = 4^{\frac{1}{3}}I$ and |A| > 4, find

 $[a^3 + b^3 + c^3]$. [.] denotes greatest integer function.

- **116.** $A = \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix}$ and $A^8 + A^6 + A^4 + A^2 + (I)V = \begin{bmatrix} 0 \\ 11 \end{bmatrix}$ (where I is the 2×2 identity matrix), then the product of all elements of matrix V is ______.
- 117. If $\begin{bmatrix} a & b \\ c & 1-a \end{bmatrix}$ is an idempotent matrix and $f(x) = x x^2$; bc = 1/4, then the value of 1/f(a) is _____.
- **118.** Let X be the solution set of the equation $A^X = I$, where $A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$ and I is the corresponding unit matrix and $X \subseteq N$, then the minimum value of $\sum (\cos^X \theta + \sin^X \theta)$, $\theta \in R$.
- 119. $A = \begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix}$ and f(x) is defined as $f(x) = \det \cdot (A^T A^{-1})$ then the value of $\underbrace{f(f(f(f......f(x))))}_{n \text{ times}}$ is $(n \ge 2)$ ______.
- 120. If A is an idempotent matrix satisfying, $(I 0.4 A)^{-1} = I \alpha A$, where I is the unit matrix of the same order as that of A, then the value of $|9\alpha|$ is equal to _____.

Date Planned ://	Daily Tutorial Sheet-10	Expected Duration: 90 Min
Actual Date of Attempt : / /	Level-2	Exact Duration :

121. Let $A = \begin{bmatrix} 3x^2 \\ 1 \\ 6x \end{bmatrix}$, $B = [a \ b \ c]$, and $C = \begin{bmatrix} (x+2)^2 & 5x^2 & 2x \\ 5x^2 & 2x & (x+2)^2 \\ 2x & (x+2)^2 & 5x^2 \end{bmatrix}$ be three given matrices, where

a, b, c and $x \in R$. Given that $tr(AB) = tr(C)x \in R$, where tr(A) denotes trace of A. If $f(x) = ax^2 + bx + c$, then the value of f(1) is _____.

122. Let $A = [a_{ij}]_{3\times 3}$ be a matrix such that $AA^T = 4I$ and $a_{ij} + 2c_{ij} = 0$, where c_{ij} is the cofactor of a_{ij} and I is the unit matrix of order 3.

$$\begin{vmatrix} a_{11}+4 & a_{12} & a_{13} \\ a_{21} & a_{22}+4 & a_{23} \\ a_{31} & a_{32} & a_{33}+4 \end{vmatrix} + 5\lambda \begin{vmatrix} a_{11}+1 & a_{12} & a_{13} \\ a_{21} & a_{22}+1 & a_{23} \\ a_{31} & a_{32} & a_{33}+1 \end{vmatrix} = 0$$

Then the value of 10λ is _____

123. Let S be the set which contains all possible values of I,m,n,p,q,r for which

$$A = \begin{bmatrix} I^2 - 3 & p & 0 \\ 0 & m^2 - 8 & q \\ r & 0 & n^2 - 15 \end{bmatrix}$$
 be a nonsingular idempotent matrix. Then the sum of all the

elements of the set S is _____

124. Let α, β, γ are the real roots of the equation $x^3 + ax^2 + bx + c = 0(a, b, c \in R \text{ and } a \neq 0)$. If the system of equations (in u, v and w) given by

$$\alpha u + \beta v + \gamma w = 0$$

$$\beta u + \gamma v + \alpha w = 0$$

$$\gamma u + \alpha v + \beta w = 0$$

has non-trivial solutions, then the value of a^2/b is _____.

125. If $a_1, a_2, a_3, 5, 4, a_6, a_7, a_8, a_9$ are in H.P., and $D = \begin{bmatrix} a_1 & a_2 & a_3 \\ 5 & 4 & a_6 \\ a_7 & a_8 & a_9 \end{bmatrix}$ then the value of [D] is

(where [.] represents the greatest integer function)

126. If $\begin{vmatrix} (\beta + \gamma - \alpha - \delta)^4 & (\beta + \gamma - \alpha - \delta)^2 & 1 \\ (\gamma + \alpha - \beta - \delta)^4 & (\gamma + \alpha - \beta - \delta)^2 & 1 \\ (\alpha + \beta - \gamma - \delta)^4 & (\alpha + \beta - \gamma - \delta)^2 & 1 \end{vmatrix} = -k(\alpha - \beta)(\alpha - \gamma)(\alpha - \delta)(\beta - \gamma)(\beta - \delta)(\gamma - \delta), \text{ then the value of } (k)^{1/2}$

- **127.** Absolute value of sum of roots of the equation $\begin{vmatrix} x+2 & 2x+3 & 3x+4 \\ 2x+3 & 3x+4 & 4x+5 \\ 3x+5 & 5x+8 & 10x+17 \end{vmatrix} = 0 \text{ is } \underline{\qquad}$
- **128.** Let $A_k(x)$ denote a polynomial of degree k where $k \ge 1$, & $\Delta(x) = \begin{vmatrix} A_3'(x) & (xA_2(x))' & (x^2A_1(x))' \\ A_3''(x) & (xA_2(x))'' & (x^2A_1(x))'' \\ A_3'''(x) & (xA_2(x))''' & (x^2A_1(x))''' \end{vmatrix}$

find \(\Delta'(100!) \)

129. If α , β , γ are real numbers, then without expanding at any stage, show that

$$\begin{vmatrix} 1 & \cos(\beta - \alpha) & \cos(\gamma - \alpha) \\ \cos(\alpha - \beta) & 1 & \cos(\gamma - \beta) \\ \cos(\alpha - \gamma) & \cos(\beta - \gamma) & 1 \end{vmatrix} = 0.$$

130. Prove that $\begin{vmatrix} (a-x)^2 & (a-y)^2 & (a-z)^2 \\ (b-x)^2 & (b-y)^2 & (b-z)^2 \\ (c-x)^2 & (c-y)^2 & (c-z)^2 \end{vmatrix} = \begin{vmatrix} (1+ax)^2 & (1+bx)^2 & (1+cx)^2 \\ (1+ay)^2 & (1+by)^2 & (1+cy)^2 \\ (1+az)^2 & (1+bz)^2 & (1+cz)^2 \end{vmatrix}$ $= 2(b-c)(c-a)(a-b) \times (y-z)(z-x)(x-y).$

Date Planned ://	Daily Tutorial Sheet-11	Expected Duration: 90 Min
Actual Date of Attempt : / /	Level-2	Exact Duration :

- 131. Express $\Delta = \begin{vmatrix} 2bc a^2 & c^2 & b^2 \\ c^2 & 2ca b^2 & a^2 \\ b^2 & a^2 & 2ab c^2 \end{vmatrix}$ as square of a determinant and hence evaluate it:
- **132.** Prove without expansion that $\begin{vmatrix} ah + bg & g & ab + ch \\ bf + ba & f & hb + bc \\ af + bc & c & bg + fc \end{vmatrix} = a \begin{vmatrix} ah + bg & a & h \\ bf + ba & h & b \\ af + bc & g & f \end{vmatrix}$
- 133. If $y = \begin{vmatrix} \sin x & \cos x & \sin x \\ \cos x & -\sin x & \cos x \\ x & 1 & 1 \end{vmatrix}$, find $\frac{dy}{dx}$.
- 134. If $f(x) = \begin{vmatrix} x^n & n! & 2 \\ \cos x & \cos \frac{n\pi}{2} & 4 \\ \sin x & \sin \frac{n\pi}{2} & 8 \end{vmatrix}$, then find the value of $\frac{d^n}{dx^n} [f(x)]_{x=0} \cdot (n \in \mathbb{Z})$.
- **135.** Show that $\begin{vmatrix} bc a^2 & ca b^2 & ab c^2 \\ ca b^2 & ab c^2 & bc a^2 \\ ab c^2 & bc a^2 & ca b^2 \end{vmatrix} = \begin{vmatrix} a^2 & c^2 & 2ac b^2 \\ 2ab c^2 & b^2 & a^2 \\ b^2 & 2bc a^2 & c^2 \end{vmatrix}$
- 136. Write down the 2×2 matrix A which corresponds to a counterclockwise rotation of 60° about the origin. In figure, the square OABC has it diagonal OB of $2\sqrt{2}$ units in length. The square is rotated counterclockwise about O through 60° . Find the coordinates of the vertices of the square after rotating.



137. Let x, y, z be the distinct common roots of equations $a^{10} = 1$ and $a^{15} = 1$ such that there real part is

positive and
$$\omega = \begin{vmatrix} 1 + x^2 + x^4 & 1 + xy + x^2y^2 & 1 + xz + x^2z^2 \\ 1 + xy + x^2y^2 & 1 + y^2 + y^4 & 1 + yz + y^2z^2 \\ 1 + xz + x^2z^2 & 1 + yz + y^2z^2 & 1 + z^2 + z^4 \end{vmatrix}$$
 then:

(A) ω is purely real

(B) ω is purely imaginary

(C) $\operatorname{Re}(\omega) > 0$

(D) $\operatorname{Re}(\omega) < 0$

138. If A, B and C are the angles of a triangle, show that the system of equations $x \sin 2A + y \sin C + z \sin B = 0$, $x \sin C + y \sin 2B + z \sin A = 0$, and $x \sin B + y \sin A + z \sin 2C = 0$ possesses nontrivial solution. Hence, system has infinite solutions.

139. If
$$ax_1^2 + by_1^2 + cz_1^2 = ax_2^2 + by_2^2 + cz_2^2 = ax_3^2 + by_3^2 + cz_3^2 = d$$
, $ax_2x_3 + by_2y_3 + cz_2z_3 = ax_3x_1 + by_3y_1 + cz_3z_1 = ax_1x_2 + by_1y_2 + cz_1z_2 = f$, then prove that
$$\begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} = \left(d - f\right) \left\{ \frac{\left(d + 2f\right)}{abc} \right\}^{1/2}$$

140. Let $\Delta = \begin{vmatrix} 2a_1b_1 & a_1b_2 + a_2b_1 & a_1b_3 + a_3b_1 \\ a_1b_2 + a_2b_1 & 2a_2b_2 & a_2b_3 + a_3b_2 \\ a_1b_3 + a_3b_1 & a_3b_2 + a_2b_3 & 2a_3b_3 \end{vmatrix}$. Expressing Δ as the product of two determinants, show

that $\Delta = 0$ hence, show that if $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = (lx + my + n)(l'x + m'y + n')$, then

$$\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0.$$

Matrices and Determinants

Date Planned : / /	Daily Tutorial Sheet - 12	Expected Duration: 90 Min	
Actual Date of Attempt ://_	Numerical Value Type for JEE Main	Exact Duration:	

- **141.** If $a^2 + b^2 + c^2 = -2$ and $f(x) = \begin{vmatrix} 1 + a^2x & (1 + b^2)x & (1 + c^2)x \\ (1 + a^2)x & 1 + b^2x & (1 + c^2)x \\ (1 + a^2)x & (1 + b^2)x & 1 + c^2x \end{vmatrix}$, then find the degree of polynomial f(x). polynomial of degree......
- **142.** If the system of equations 3x 2y + z = 0, $\lambda x 14y + 15z = 0$, x + 2y + 3z = 0 has a non-trivial solution, then find the value of λ^2 .
- **143.** Let $f(x) = \begin{vmatrix} \cos x & -x & 1 \\ 2\sin x & -x^2 & 2x \\ \tan x & -x & 1 \end{vmatrix}$. Find the value of $\lim_{x \to 0} \frac{f'(x)}{x}$.
- **144.** Let $f(x) = \begin{vmatrix} 2\cos^2 x & \sin(2x) & -\sin x \\ \sin(2x) & 2\sin^2 x & \cos x \\ \sin x & -\cos x & 0 \end{vmatrix}$. Find the value of $\frac{1}{\pi} \int_0^{\pi/2} [f(x) + f'(x)] dx$.
- **145.** If $\begin{vmatrix} 3a & -a+b & -a+c \\ -b+a & 3b & -b+c \\ -c+a & -c+b & 3c \end{vmatrix} = k(a+b+c)(ab+bc+ac)$, then find the value of k.
- **146.** Let $\phi_1(x) = x + a_1$, $\phi_2(x) = x^2 + b_1 x + b_2$, $x_1 = 2$, $x_2 = 3$ and $x_3 = 5$ and $\Delta = \begin{vmatrix} 1 & 1 & 1 \\ \phi_1(x_1) & \phi_1(x_2) & \phi_1(x_3) \\ \phi_2(x_1) & \phi_2(x_2) & \phi_2(x_3) \end{vmatrix}$

Find the value of Δ .

147. If the system of equations

$$ax + hy + g = 0$$
 ...(i)
 $hx + by + f = 0$...(ii)

and
$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c + t = 0$$
 ...(iii)

has a unique solution and $\frac{abc + 2 fgh - af^2 - bg^2 - ch^2}{h^2 - ab} = 8$, find the value of 't'.

148. If $\begin{vmatrix} 1 & x & x^2 \\ x & x^2 & 1 \\ x^2 & 1 & x \end{vmatrix} = 3$, then the value of $\begin{vmatrix} x^3 - 1 & 0 & x - x^4 \\ 0 & x - x^4 & x^3 - 1 \\ x - x^4 & x^3 - 1 & 0 \end{vmatrix}$ is

- **149.** If $A^2 = 3A 2I$ and $A^8 = pA + qI$, then p + q is
- **150.** If A, B and C are $n \times n$ matrices and $\det(A) = 2$, $\det(B) = 3$ and $\det(C) = 5$, then find the value of $= [\det(A^2BC^{-1})]$ (where $[\cdot]$ represents greatest integer function).
- **151.** If matrix $A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$, where a, b, c are real positive numbers, abc = 1 and $A^TA = I$, then find greatest value of $a^3 + b^3 + c^3$.
- **152.** Let $a_r = r({}^7C_r), b_r = (7-r)({}^7C_r)$ and $A_r = \begin{bmatrix} a_r & 0 \\ 0 & b_r \end{bmatrix}$. If $A = \sum_{r=0}^7 A_r = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$, then find the value of a + b.
- **153.** If the system of equations

$$x + y + z = 5$$

$$x + 2y + 3z = 9$$

$$x + 3y + \alpha z = \beta$$

has infinitely many solutions, then find $\beta - \alpha$

- **154.** Let A be the set of all 3×3 symmetric matrices all of whose entries are either 0 or 1. Five of these entries are 1 and four of them are 0. If n is the number of such matrices, then find $\frac{n}{2}$.
- **155.** Let $A = \begin{bmatrix} 2 & 3 \\ -1 & 5 \end{bmatrix}$. If $A^{-1} = xA + yI$, then the value of 2y + x, is

Matrices and Determinants

Date Planned : / /	Daily Tutorial Sheet - 1	Expected Duration: 90 Min
Actual Date of Attempt : / /	JEE Main (Archive)	Exact Duration :

1. If the system of linear equations

$$x + ky + 3z = 0$$

$$3x + ky - 2z = 0$$

$$2x + 4y - 3z = 0$$

has a non-zero solutions (x, y, z), then $\frac{xz}{v^2}$ is equal to :

(A) 30 (B) -10 (C) 10 (D) -30

If $\begin{vmatrix} x-4 & 2x & 2x \\ 2x & x-4 & 2x \end{vmatrix} = (A+Bx)(x-A)^2$, then the ordered pair (A, B) is equal to: 2.

(A) (4, 5) (B) (-4, -5)

(C) (-4, 3)

(D)

Let A be a matrix such that $A \cdot \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ is a scalar matrix and |3A| = 108. Then A^2 equals: 3.

 $\begin{bmatrix} 36 & -32 \\ 0 & 4 \end{bmatrix} \qquad$ **(B)** $\qquad \begin{bmatrix} 4 & 0 \\ -32 & 36 \end{bmatrix} \qquad$ **(C)** $\qquad \begin{bmatrix} 4 & -32 \\ 0 & 36 \end{bmatrix} \qquad$ **(D)** $\qquad \begin{bmatrix} 36 & 0 \\ -32 & 4 \end{bmatrix}$

4. Let S be the set of all real values of k for which the system of linear equations x + y + z = 2; 2x + y - z = 3; 3x + 2y + kz = 4 has a unique solution. Then S is :

an empty set (B)

equal to R

(C) equal to {0}

12

(D) equal to $R - \{0\}$

If the system of linear equations: x + ay + z = 3, x + 2y + 2z = 6, x + 5y + 3z = b has no solution, then: 5.

a = -1, b = 9 **(B)** $a \ne -1, b = 9$ **(C)** $a = 1, b \ne 9$

(D) $a = -1, b \neq 9$

Suppose A is any 3 \times 3 non-singular matrix and (A-3I)(A-5I)=O, where $I=I_3$ and $O=O_3$. If 6. $\alpha A + \beta A^{-1} = 4I$, then $\alpha + \beta$ is equal to :

(C)

8 (D)

Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ and $B = A^{20}$. Then the sum of the elements of the first column of B is : 7.

(B) 251 (C)

(D) 210

If $A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$, then $adj(3A^2 + 12A)$ is equal to:

(A) $\begin{bmatrix} 51 & 63 \\ 84 & 72 \end{bmatrix}$ (B) $\begin{bmatrix} 51 & 84 \\ 63 & 72 \end{bmatrix}$ (C) $\begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}$ (D) $\begin{bmatrix} 72 & -84 \\ -63 & 51 \end{bmatrix}$

- 9. If S is the set of distinct values of 'b' for which the following system of linear equations x + y + z = 1, x + ay + z = 1, ax + by + z = 0 has no solution then S is :
 - (A) an infinite set
 - (B) a finite set containing two or more elements
 - (C) a singleton
 - (D) an empty set
- If $S = \begin{cases} x \in [0, 2\pi] : \begin{vmatrix} 0 & \cos x & -\sin x \\ \sin x & 0 & \cos x \\ \cos x & \sin x & 0 \end{vmatrix} = 0 \end{cases}$, then $\sum_{x \in S} \tan \left(\frac{\pi}{3} + x \right)$ is equal to : 10.
 - $-2 + \sqrt{3}$

- $4 + 2\sqrt{3}$ (C) $-4 2\sqrt{3}$ (D) $-2 \sqrt{3}$
- 11. The number of real values of λ for which the system of linear equations $2x + 4y - \lambda z = 0$, $4x + \lambda y + 2z = 0$, $\lambda x + 2y + 2z = 0$ has infinitely many solutions, is:
 - (A)
- (B)
- (C)
- (D) 3
- Let A be any 3 × 3 invertible matrix. Then which one of the following is not always true? 12.
 - $adj (adj (A)) = |A| \cdot (adj (A))^{-1}$ (A)
- **(B)** $adj (adj (A)) = |A|^2 \cdot (adj (A))^{-1}$

 $adi(A) = |A| \cdot A^{-1}$ (C)

- **(D)** $adj (adj (A)) = |A| \cdot A$
- For two 3 \times 3 matrices A and B, let A + B = 2B' and $3A + 2B = I_3$, where B' is the transpose of and I_3 is 13. 3×3 identity matrix. Then:
 - - $10A + 5B = 3I_3$ (B) $5A + 10B = 2I_3$ (C) $3A + 6B = 2I_3$ (D) $B + 2A = I_3$

- If $A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix}$ and $A adj A AA^T$, then 5a + b is equal to: 14.
 - (A)
- (B)
- (C)
- (D) 13
- The system of linear equation $x + \lambda y z = 0$, $\lambda x y z = 0$, $x + y \lambda z = 0$ has a non-trivial solution for : 15.
 - (A) infinitely many values of λ
- (B) exactly one value of $\,\lambda$
- (C) exactly two values of λ
- (D) exactly three values of λ

Date Planned ://	Daily Tutorial Sheet - 2	Expected Duration: 90 Min		
Actual Date of Attempt : / /	JEE Main (Archive)	Exact Duration :		

- cos x sin x sin x = 0 in the interval $\left| -\frac{\pi}{4}, \frac{\pi}{4} \right|$ is : The number of distinct real roots of the equation, $\sin x \cos x \sin x$ 16.
 - (A)
- (B)
- (C)
- (D)
- If $P = \begin{vmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{vmatrix}$, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $Q = PAP^T$, then P^TQ^{2015} P is:
- $\begin{bmatrix} 0 & 2015 \\ 0 & 0 \end{bmatrix} \qquad \textbf{(B)} \qquad \begin{bmatrix} 2015 & 0 \\ 1 & 2015 \end{bmatrix} \qquad \textbf{(C)} \qquad \begin{bmatrix} 1 & 2015 \\ 0 & 1 \end{bmatrix} \qquad \textbf{(D)} \qquad \begin{bmatrix} 2015 & 1 \\ 0 & 2015 \end{bmatrix}$

Let A be a 3×3 matrix such that $A^2 - 5A + 7I = 0$. 18.

Statement -I: $A^- = \frac{1}{7}(5I - A)$.

Statement -II: The polynomial $A^3 - 2A^2 - 3A + I$ can be reduced to 5(A - 4I). Then:

- (A) Both the statements are true.
- (B) Both the statements are false.
- (C) Statement-I is true, but Statement -II is false.
- (D) Statement-I is false, but Statement-II is true.
- If $A = \begin{bmatrix} -4 & -1 \\ 3 & 1 \end{bmatrix}$, then the determinant of the matrix $(A^{2016} 2A^{2015} A^{2014})$ is : 19.

- 20. The set of all values of λ for which the system of linear equations

 $2x_1 - 2x_2 + x_3 = \lambda x_1$, $2x_1 - 3x_2 + 2x_3 = \lambda x_2$, $-x_1 + 2x_2 = \lambda x_3$ has a non-trivial solution,

- (A) contains two elements
- contains more than two elements

(C) is an empty set

- (D) is a singleton
- If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix}$ is a matrix satisfying the equation $AA^T = 9I$, where I is a 3 × 3 identify matrix, then 21.

the ordered pair (a, b) is equal to:

- (A) (2, 1)
- (-2, -1)
- (C) (2, -1)
- The least value of the product xyz for which the determinant $\begin{vmatrix} x & 1 & 1 \\ 1 & y & 1 \\ 1 & 1 & z \end{vmatrix}$ is non-negative is : 22.
 - $-2\sqrt{2}$ (A)
- $-16\sqrt{2}$ (B)
- (C) -8
- (D) -1

23.	If $A = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$, then which one of the following statements is not correct 7
-----	---	---

(A)
$$A^4 - I = A^2 + I$$

(B)
$$A^3 - I = A(A - I)$$

(C)
$$A^2 + I = A(A^2 - I)$$

(D)
$$A^3 + I = A(A^3 - I)$$

24. If A is a
$$3 \times 3$$
 matrix such that $|5 \cdot adj A| = 5$, then $|A|$ is equal to:

(A)
$$\pm \frac{1}{5}$$

(D)
$$\pm \frac{1}{25}$$

25. If
$$\begin{vmatrix} x^2 + x & x + 1 & x - 2 \\ 2x^2 + 3x - 1 & 3x & 3x - 3 \\ x^2 + 2x + 3 & 2x - 1 & 2x - 1 \end{vmatrix} = ax - 12$$
, then 'a' is equal to:

26. If A is an
$$3 \times 3$$
 non-singular matrix such that $AA' = A'A$ and $B = A^{-1}A'$, then BB' equals :

(C)
$$(B^{-1})'$$

(D)
$$I + B$$

27. If
$$\alpha$$
, $\beta \neq 0$ and $f(n) = \alpha^n + \beta^n$ and
$$\begin{vmatrix} 3 & 1 + f(1) & 1 + f(2) \\ 1 + f(1) & 1 + f(2) & 1 + f(3) \\ 1 + f(2) & 1 + f(4) \end{vmatrix} = K(1 - \alpha)^2(1 - \beta)^2(\alpha - \beta)^2$$
, then K is equal to:

(A)
$$\frac{1}{\alpha\beta}$$

28. If A an
$$3 \times 3$$
 non-singular matrix such that $AA' = A'A$ and $B = A^{-1}A'$, then BB' is equal to:

(D)
$$(B^{-1})'$$

29. The number of values of
$$k$$
, for which the system of equations $(k+1)x+8y=4k$, $kx+(k+3)y=3k-1$ has no solution, is :

30. If
$$P\begin{bmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix}$$
 is the adjoint of a 3×3 matrix A and $|A| = 4$, then α is equal to:

3

Date Planned ://	Daily Tutorial Sheet - 3	Expected Duration: 90 Min		
Actual Date of Attempt : / /	JEE Main (Archive)	Exact Duration :		

	[1	0	0		1]	0		
31.	Let A =	2	1	0	. If μ_1 and μ_2 are column matrices such that Au_1 =	= O	and $Au_2 =$	1	, then $\mu_1 + \mu_2$ i	is
		3	2	1		0		0		

equal to:

(A)
$$\begin{bmatrix} -1\\1\\0 \end{bmatrix}$$
 (B) $\begin{bmatrix} -1\\1\\-1 \end{bmatrix}$ (C) $\begin{bmatrix} -1\\-1\\0 \end{bmatrix}$ (D) $\begin{bmatrix} 1\\-1\\-1 \end{bmatrix}$

32. Let P and Q be 3×3 matrices $P \neq Q$. If $P^3 = Q^3$ and $P^2Q = Q^2P$, then determinant of $(P^2 + Q^2)$ is equal to:

(A) -2 (B) 1 (C) 0 (D) -133. The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 posses a non-zero solution, is :

(A) 2 (B) 1 (C) 0 (D)

34. Let *A* and *B* be two symmetric matrices of order 3.

Statement I: A(BA) and (AB) A are symmetric matrices.

Statement II: AB is symmetric matrix, if matrix multiplication of A with B is commutative.

(A) Statement I is true, Statement II is true; Statement II is not a correct explanation of Statement I

(B) Statement I is true, Statement II is false

(C) Statement I is false, Statement II is true

(D) Statement I is true, Statement II is true; Statement II is a correct explanation of Statement I

35. If the trivial solution is the only solution of the system of equations x - ky + z = 0, kx + 3y - kz = 0 and 3x + y - z = 0. Then, set of all values of k is:

(A) $\{2, -3\}$ (B) $R - \{2, -3\}$ (C) $R - \{2\}$

36. Statement I: Determinant of a skew-symmetric matrix of order 3 is zero.

Statement II: For any matrix A, $\det(A^T) = \det(A)$ and $\det(-A) = -\det(A)$. Then:

(A) Statement I is true and Statement II is false

(B) Both Statements are true

(C) Both Statements are false

(D) Statement I is false and Statement II is true

37. If $\omega \neq 1$ is the complex cube root of unity and matrix $H = \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix}$, then H^{70} is equal to :

(A) H (B) 0 (C) -H (D) H²

38. Consider the system of linear equations $x_1 + 2x_2 + x_3 = 3$, $2x_1 + 3x_2 + x_3 = 3$ and $3x_1 + 5x_2 + 2x_3 = 1$. Then system has:

(A) Infinite number of solutions (B) Exactly 3 solutions

(C) A unique solution (D) No solution

- **39.** The number of 3 × 3 non-singular matrices, with four entries as 1 and all other entries as 0, is:
 - (A) Less than 4
- (B)
- (C)
- (D) Atleast 7
- **40.** Let A be 2×2 matrix with non-zero entries and $A^2 = I$, where I is 2×2 identity matrix.

Define tr(A) = Sum of diagonal elements of A and |A| = Determinant of matrix A.

Statement I: tr(A) = 0Statement II: |A| = 1

- (A) Statement I is false, Statement II is true
- (B) Statement I is true, Statement II is true; Statement II is a correct explanation of Statement I
- (C) Statement I is true, Statement II is true; Statement II is not a correct explanation of Statement I
- (D) Statement I is true, Statement II is false
- **41.** Let a, b and c be such that $(b+c) \neq 0$. If $\begin{vmatrix} a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1 \end{vmatrix} + \begin{vmatrix} a+1 & b+1 & c-1 \\ a-1 & b-1 & c+1 \\ (-1)^{n+2}a & (-1)^{n+1}b & (-1)^n c \end{vmatrix} = 0$, then the

value of 'n' is:

(A) Zero

(B) Any even integer

(C) Any odd integer

(D) Any integer

42. Let A be 2×2 matrix.

Statement I: adj(adj A) = A

Statement II: |adj A| = A

- (A) Statement I is false, Statement II is true
- (B) Statement I is true, Statement II is true; Statement II is a correct explanation of Statement I
- (C) Statement I is true, Statement II is true; Statement II is not a correct explanation of Statement I
- (D) Statement I is true, Statement II is false
- 43. Let A is 2×2 matrix with real entries. Let I be the 2×2 identity matrix. Denote by tr(A), the sum of diagonal entries of A. Assume that $A^2 = I$.

Statement I: If $A \neq I$ and $A \neq -I$, then det(A) = -1

Statement II: If $A \neq I$ and $A \neq -I$, then $tr(A) \neq 0$

- (A) Statement I is false, Statement II is true
- (B) Statement I is true, Statement II is true; Statement II is a correct explanation of Statement I
- (C) Statement I is true, Statement II is true; Statement II is not a correct explanation of Statement I
- (D) Statement I is true, Statement II is false
- 44. Let a, b and c be any real numbers. Suppose that there are real numbers x, y, z not all zero such that x = cy + bz, y = az + cx and z = bx + ay. Then, $a^2 + b^2 + c^2 + 2abc$ is equal to:
 - (A)
- 1
- (B)
- **(C)** −1
- (D)
- **45.** Let *A* be a square matrix all of whose entries are integers. Then, which one of the following is true?
 - (A) If $det(A) = \pm 1$, then A^{-1} need not exist
 - **(B)** If $det(A) = \pm 1$, then A^{-1} exist but all its entries are not necessarily integers
 - (C) If $det(A) = \pm 1$, then A^{-1} exist but all its entries are non-integers
 - (D) If $det(A) = \pm 1$, then A^{-1} exist but all its entries are integers

Date Planned ://	Daily Tutorial Sheet - 4	Expected Duration : 90 Min		
Actual Date of Attempt : / /	JEE Main (Archive)	Exact Duration :		

		1	1	1	
46.	If $D =$	1	1 + <i>x</i>	1	for $x \neq 0$, $y \neq 0$, then D is
		1	1	1 – y	

- (A) Divisible by neither x nor y
- **(B)** Divisible by both x and y
- (C) Divisible by x but not y
- **(D)** Divisible by y but not x

47. Let
$$A = \begin{bmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{bmatrix}$$
. If $|A^2| = 25$, then $|\alpha|$ is equal to :

- **(A)** 5²
- (B)
- (C) $\frac{1}{5}$
- (D)

48. If A and B are square matrices of size $n \times n$ such that $A^2 - B^2 = (A - B)(A + B)$, then which of the following will be always true?

(A) AB = BA

- **(B)** Either of A or B is a zero matrix
- (C) Either of A or B is an identity matrix
- (D) A = E

49. Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$; $a, b \in \mathbb{N}$. Then:

- (A) There exists more than one but finite number of B's such that AB = BA
- **(B)** There exists exactly one B such that AB = BA
- (C) There exist infinitely many B's such that AB = BA
- (D) There cannot exist any B such that AB = BA

50. If
$$A^2 - A + I = O$$
, then the inverse of A is:

- (A) I A
- (B)
- C)
- (D) A +

51. If $a^2 + b^2 + c^2 = -2$ and $f(x) = \begin{vmatrix} 1 + a^2x & (1 + b^2)x & (1 + c^2)x \\ (1 + a^2)x & 1 + b^2x & (1 + c^2)x \end{vmatrix}$ then f(x) is a polynomial of degree : $(1 + a^2)x & (1 + b^2)x & 1 + c^2x \end{vmatrix}$

(A) 2

1

- (B)
- (C) (
- **(D)** 1

52. The system of equations $\alpha x + y + z = \alpha - 1$, $x + \alpha y + z = \alpha - 1$ and $x + y + \alpha z = \alpha - 1$ has no solution, if α is :

- (A)
- (B)
- not -2
- (C) Either -2 or 1 (D)
 -) –

53. If $a_1, a_2, ..., a_n, ...$ are in GP, then the determinant $\Delta = \begin{vmatrix} \log a_n & \log a_{n+1} & \log a_{n+2} \\ \log a_{n+3} & \log a_{n+4} & \log a_{n+5} \\ \log a_{n+6} & \log a_{n+7} & \log a_{n+8} \end{vmatrix}$ is equal to :

- **(A)** 2
- (B)
- (C)
- (D)

- 54. Let $A = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$. The only correct statement about the matrix A is :
 - (A) A is a zero matrix

(B) A = (-1)I, where I is a unit matrix

(C) A^{-1} does not exist

- **(D)** $A^2 = I$
- 55. Let $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$ and $10B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}$. If B is the inverse of matrix A, then α is equal to:
 - **(A)** -2
- **(B)** 1
- (C) 2
- (D)
- **56.** If the system of linear equations x + 2ay + az = 0, x + 3by + bz = 0 and x + 4cy + cz = 0 has a non-zero solution, then a, b and c:
 - (A) are in AP
- (B) are in GP
- (C) are in HP
- **(D)** satisfy a + 2b + 3c = 0

- **57.** If $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ and $A^2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$:
 - (A) $\alpha = a^2 + b^2$ and $\beta = ab$
- **(B)** $\alpha = a^2 + b^2$ and $\beta = 2ab$
- (C) $\alpha = a^2 + b^2 \text{ and } \beta = a^2 b^2$
- **(D)** $\alpha = 2ab \text{ and } \beta = a^2 + b^2$
- **58.** If 1, ω and ω^2 are the cube roots of unity, then $\Delta = \begin{bmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^n & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^n \end{bmatrix}$ is equal to :
 - **(A)** 0
- (B)
- (C) 0
- **(D)** α
- **59.** If I, m and n are the pth, qth and rth terms of a GP and all positive, then $\begin{vmatrix} \log I & p & 1 \\ \log m & q & 1 \\ \log n & r & 1 \end{vmatrix}$ is :
 - **(A)** 3
- **(B)** 2
- (C)
- **(D)** 0
- **60.** If $\omega(\neq 1)$ is a cubic root of unity, then $\begin{vmatrix} 1 & 1+i+\omega^2 & \omega^2 \\ 1-i & -1 & \omega^2-1 \\ -i & -1+\omega-i & -1 \end{vmatrix}$ is equal to :
 - (A) (
- 3)
- (C)
- **(D)** 0

Date Planned : / /	Daily Tutorial Sheet - 5	Expected Duration : 90 Min
Actual Date of Attempt : / /	JEE Main (Archive)	Exact Duration :

- **61.** If *A* is a symmetric matrix and *B* is a skew-symmetric matrix such that $A + B = \begin{bmatrix} 2 & 3 \\ 5 & -1 \end{bmatrix}$, then *AB* is equal to:
 - (A) $\begin{bmatrix} -4 & -2 \\ -1 & 4 \end{bmatrix}$ (B) $\begin{bmatrix} 4 & -2 \\ -1 & -4 \end{bmatrix}$ (C) $\begin{bmatrix} 4 & -2 \\ 1 & -4 \end{bmatrix}$ (D) $\begin{bmatrix} -4 & 2 \\ 1 & 4 \end{bmatrix}$
- 62. The total number of matrices $A = \begin{bmatrix} 0 & 2y & 1 \\ 2x & y & -1 \\ 2x & -y & 1 \end{bmatrix}$, $(x, y \in R, x \neq y)$ for which $A^T A = 3I_3$ is:
- (A) 2 (B) 4 (C) 3 (D) 6

 63. Let $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$, $(\alpha \in R)$ such that $A^{32} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Then, a value of α is:
 - (A) $\frac{\pi}{32}$ (B) 0 (C) $\frac{\pi}{64}$ (D) $\frac{\pi}{16}$
- **64.** Let $P = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 9 & 3 & 1 \end{bmatrix}$ and $Q = [q_{ij}]$ be two 3×3 matrices such that $Q P^5 = I_3$. Then, $\frac{q_{21} + q_{31}}{q_{32}}$ is equal to:
 - **(A)** 10 **(B)** 135 **(C)** 9 **(D)** 15
- **65.** Let $A = \begin{bmatrix} 0 & 2q & r \\ p & q & -r \\ p & -q & r \end{bmatrix}$. If $AA^T = I_3$, then |p| is:
 - (A) $\frac{1}{\sqrt{5}}$ (B) $\frac{1}{\sqrt{2}}$ (C) $\frac{1}{\sqrt{3}}$ (D) $\frac{1}{\sqrt{6}}$
- **66.** A value of $\theta \in (0, \pi/3)$, for which $\begin{vmatrix} 1 + \cos^2 \theta & \sin^2 \theta & 4\cos 6\theta \\ \cos^2 \theta & 1 + \sin^2 \theta & 4\cos 6\theta \\ \cos^2 \theta & \sin^2 \theta & 1 + 4\cos 6\theta \end{vmatrix} = 0, \text{ is:}$
 - (A) $\frac{\pi}{9}$ (B) $\frac{\pi}{18}$ (C) $\frac{7\pi}{24}$ (D) $\frac{7\pi}{36}$
- 67. The sum of the real roots of the equation $\begin{vmatrix} x & -6 & -1 \\ 2 & -3x & x 3 \\ -3 & 2x & x + 2 \end{vmatrix} = 0$, is equal to:
 - **(A)** 0 **(B)** -4 **(C)** 6 **(D)** 1
- **68.** If $\Delta_1 = \begin{vmatrix} x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x \end{vmatrix}$ and $\Delta_2 = \begin{vmatrix} x & \sin 2\theta & \cos 2\theta \\ -\sin 2\theta & -x & 1 \\ \cos 2\theta & 1 & x \end{vmatrix}$, $x \neq 0$, then for all $\theta \in \left(0, \frac{\pi}{2}\right)$
 - (A) $\Delta_1 + \Delta_2 = -2(x^3 + x 1)$ (B) $\Delta_1 \Delta_2 = -2x^3$
 - (C) $\Delta_1 + \Delta_2 = -2x^3$ (D) $\Delta_1 \Delta_2 = x(\cos 2\theta \cos 4\theta)$

- If $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \dots \begin{bmatrix} 1 & n-1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 78 \\ 0 & 1 \end{bmatrix}$, then the inverse of $\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$ is:

- (A) $\begin{bmatrix} 1 & 0 \\ 12 & 1 \end{bmatrix}$ (B) $\begin{bmatrix} 1 & -13 \\ 0 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 0 \\ 13 & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & -12 \\ 0 & 1 \end{bmatrix}$
- Let α and β be the roots of the equation $x^2 + x + 1 = 0$. Then, for $y \neq 0$ in R, $\begin{vmatrix} y+1 & \alpha & \beta \\ \alpha & y+\beta & 1 \\ \beta & 1 & y+\alpha \end{vmatrix}$ is 70. equal to:
- $y(y^2-1)$ **(B)** $y(y^2-3)$ **(C)** y^3-1
- (D) v^3
- Let the numbers 2, b, c be in an AP and $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & b & c \\ 4 & b^2 & c^2 \end{bmatrix}$. If $det(A) \in [2,16]$, then c lies in the interval. 71.
- $[3, 2+2^{3/4}]$ **(B)** $(2+2^{3/4}, 4)$ **(C)** [4, 6]
- [2, 3)
- If $A = \begin{bmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{bmatrix}$; then for all $\theta \in \left(\frac{3\pi}{4}, \frac{5\pi}{4}\right)$, $\det(A)$ lies in the interval. 72.
 - (A) $\left(\frac{3}{2}, 3\right]$ (B) $\left[\frac{5}{2}, 4\right]$ (C) $\left(0, \frac{3}{2}\right]$ (D) $\left(1, \frac{5}{2}\right]$

- If $\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)(x+a+b+c)^2$, $x \ne 0$ and $a+b+c\ne 0$, then x is equal to: 73.
- -2(a+b+c) (C) 2(a+b+c)
- 74. Let $a_1, a_2, a_3, \ldots, a_{10}$ be in GP with $a_i > 0$ for $i = 1, 2, \ldots, 10$ and S be the set of pairs (r,k), where $k \in N$ (the set of natural numbers) for which

$$\begin{vmatrix} \log_e a_1^r a_2^k & \log_e a_2^r a_3^k & \log_e a_3^r a_4^k \\ \log_e a_4^r a_5^k & \log_e a_5^r a_6^k & \log_e a_6^r a_7^k \\ \log_e a_7^r a_8^k & \log_e a_8^r a_9^k & \log_e a_9^r a_{10}^k \end{vmatrix} = 0$$

Then, the number of elements in S_i is:

- (A)
- (C) 10
- (D) Infinitely many
- Let $A = \begin{bmatrix} 2 & b & 1 \\ b & b^2 + 1 & b \\ 1 & b & 2 \end{bmatrix}$, where b > 0. Then, the minimum value of $\frac{\det(A)}{b}$ is:
 - $-\sqrt{3}$ (A)
- $-2\sqrt{3}$
- $2\sqrt{3}$ (C)
- $\sqrt{3}$

Date Planned ://	Daily Tutorial Sheet - 6	Expected Duration: 90 Min		
Actual Date of Attempt : / /	JEE Main (Archive)	Exact Duration :		

 $(\sin \theta) - 2$ Let $d \in R$, and $A = \begin{bmatrix} 1 & (\sin \theta) + 2 & d \\ 5 & (2\sin \theta) - d & (-\sin \theta) + 2 + 2d \end{bmatrix}$ d , $\theta \in [0, 2\pi]$. If the minimum value of det(A) is 8, then 76.

a value of d is:

(A) -5

 $2(\sqrt{2}+1)$ (C)

 $2(\sqrt{2}+2)$ (D)

If $B = \begin{bmatrix} 5 & 2\alpha & 1 \\ 0 & 2 & 1 \\ \alpha & 3 & -1 \end{bmatrix}$ is the inverse of a 3×3 matrix A, then the sum of all values of α for which $\det(A) + 1 = 0$, **77**.

is:

(A)

(D) 2

If $A = \begin{bmatrix} e^t & e^{-t}\cos t & e^{-t}\sin t \\ e^t & -e^{-t}\cos t - e^{-t}\sin t & -e^{-t}\sin t + e^{-t}\cos t \\ e^t & 2e^{-t}\sin t & -2e^{-t}\cos t \end{bmatrix}$ then A is: 78.

> (A) Invertible only when $t = \pi$

(B) Invertible for every $t \in R$

(C) Not invertible for any $t \in R$ (D) Invertible only when $t = \frac{\pi}{2}$

79. Let A and B be two invertible matrices of order 3×3 . If $det(ABA^T) = 8$ and $det(AB^{-1}) = B$, then $det(BA^{-1}B^T)$ is equal to:

(A)

(D) 16

If $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, then the matrix A^{-50} when $\theta = \frac{\pi}{12}$, is equal to: 80.

(A) $\begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$ (B) $\begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$ (C) $\begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$ (D) $\begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$

- If [x] denotes the greatest integer $\leq x$, then the system of linear equations $[\sin \theta]x + [-\cos \theta]y = 0$, 81. $[\cot \theta]x + y = 0.$
 - Have infinitely many solution if $\theta \in \left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$ and has a unique solution of $\theta \in \left(\pi, \frac{7\pi}{6}\right)$ (A)
 - Has a unique solution if $\theta \in \left(\frac{\pi}{2}, \frac{2\pi}{3}\right) \cup \left(\pi, \frac{7\pi}{3}\right)$ (B)
 - Has a unique solution if $\theta \in \left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$ and have infinitely many solutions if $\theta \in \left(\pi, \frac{7\pi}{6}\right)$ (C)
 - Have infinitely many solutions if $\theta \in \left(\frac{\pi}{2}, \frac{2\pi}{3}\right) \cup \left(\pi, \frac{7\pi}{6}\right)$ (D)
- Let λ be a real number for which the system of linear equations x + y + z = 6, $4x + \lambda y \lambda z = \lambda 2$ and 82. 3x + 2y - 4z = -5 has infinitely many solutions. Then λ is a root of the quadratic equation:

 $\lambda^2 - 3\lambda - 4 = 0$ (B) $\lambda^2 + 3\lambda - 4 = 0$ (C) $\lambda^2 - \lambda - 6 = 0$ (D)

83.		ystem of linear e				$2z = 6, \ x + 3y + \lambda$	$Z = \mu, (\lambda,$	$\mu \in R$),
	(A)	initely many solu 7	(B)	12	(C)	10	(D)	9
84.	If the s	system of equation	ons 2 <i>x</i> +	$3y-z=0,\ x+$	ky – 2z	= 0 and 2x - y	+ z = 0 l	nas a non-trivial solution
	(x, y, z)), then $\frac{x}{y} + \frac{y}{z} + \frac{z}{x}$	+k is ed	qual to:				
	(A)	-4	(B)	$\frac{1}{2}$	(C)	$-\frac{1}{4}$	(D)	$\frac{3}{4}$
85.		then (x, y) lies or	n the stra		equatior	n is:		3 has a solution (x, y, z) ,
86.	• •	-		-		-		-
60 .		z = 0 has a no			em or m	near equations .	x – cy –	cz = 0, cx - y + cz = 0,
	(A)	-1	(B)	1/2	(C)	2	(D)	9
87.					n of line	ear equation <i>x</i> -	2y – 2z	$=\lambda x$, $x+2y+z=\lambda y$ and
	_	= λz has a non-			(D)	0 1 - 1		
	(A) (C)	Contains exact Is a singleton	iy two ei	ements	(B) (D)	Contains more Is an empty set		o elements
88.	An orde	ered pair (α, β) for $(1 + \alpha)x + \beta y + z$ $\alpha x + (1 + \beta)y + z$	= 2	the system of lir	near equa	ations		
		$\alpha x + \beta y + 2z = 2$						
	Has a u	unique solution,	is					
	(A)	(2, 4)	(B)	(-4, 2)	(C)	(1, -3)	(D)	(-3, 1)
89.	If the s	ystem of linear e 2x + 2y + 3z = 6 3x - y + 5z = b x - 3y + 2z = c	-	5				
		a, b, c are non-ze						
	(A)	b-c-a=0	(B)	a + b + c = 0	(C)	b - c + a = 0		b+c-a=0
90.		mber of values of x + 3y + 7y = 0 -x + 4y + 7z = 0 $(\sin 3\theta)x + (\cos 2\theta)$	ο 2θ)y + 2 <i>z</i>		system d	i iinear equatior	IS	
	has a r	non-trivial solution Two	on, is: (B)	Three	(C)	Four	(D)	One
91.								s consistent, then:
7	(A)	2g + h + k = 0		g + 2h + k = 0		g + h + k = 0	(D)	g + h + 2k = 0
92.	The sys	stem of linear eq	uations,	x + y + z = 2, 2x	+ 3y + 2	2z = 5, $2x + 3y +$	$(a^2 - 1)z$	= <i>a</i> +1.
	(A)	Has infinitely n	-	_	(B)	Is inconsistent		_
	(C)	Has a unique s	olution f	for $ a = \sqrt{3}$	(D)	Is inconsistent	when a	= √3

Date Planned : / /	Daily Tutorial Sheet - 7	Expected Duration: 90 Min		
Actual Date of Attempt : / /	JEE Main (Archive)	Exact Duration :		

93. The following system of linear equations

[2020]

$$7x + 6y - 2z = 0$$

$$3x + 4y + 2z = 0$$

$$x - 2y - 6z = 0$$
, has

- (A) infinitely many solutions, (x, y, z) satisfying x = 2z
- **(B)** infinitely many solutions, (x, y, z) satisfying y = 2z
- (C) no solution
- **(D)** only the trivial solution

94. Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be two 3 × 3 matrices such that $b_{ij} = (3)^{(i+j-2)}a_{ji}$, where i, j = 1,2,3. If the determinant of B is 81 then the determinant of A is: [2020]

- **(A)** 3
- (B)

1/3

- (C) 1/81
- **(D)** 1/9

95. If the system of linear equations,

$$x + y + z = 6$$

$$x + 2y + 3z = 10$$

$$3x + 2y + \lambda z = \mu$$

has more than two solutions, then $\mu - \lambda^2$ is equal to _____.

[2020]

96. If
$$A = \begin{pmatrix} 2 & 2 \\ 9 & 4 \end{pmatrix}$$
 and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, then $10A^{-1}$ is equal to:

[2020]

(A)
$$6I - A$$

(B)
$$A - 4I$$

(C)
$$4I - I$$

(D) A - 6I

97. Let a - 2b + c = 1

If
$$f(x) = \begin{vmatrix} x+a & x+2 & x+1 \\ x+b & x+3 & x+2 \\ x+c & x+4 & x+3 \end{vmatrix}$$
 then:

(A)
$$f(50) = -501$$

(B)
$$f(-50) = 501$$

(C)
$$f(-50) = -1$$

f(50) = 1 [2020]

98. Let α be a root of the equation $x^2 + x + 1 = 0$ and the matrix $A = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \alpha^2 & \alpha^4 \end{bmatrix}$, then the matrix

A³¹ is equal to:

[2020]

(B)
$$A^3$$

(D)
$$A^2$$

99. If the system of linear equations,

$$2x + 2ay + az = 0$$

$$2x + 3by + bz = 0$$

$$2x + 4cy + cz = 0$$

Where $a,b,c \in R$ are non-zero and distinct; has a non-zero solution, then:

[2020]

(A)
$$a + b + c = 0$$

(B)
$$a, b, c$$
 are in G.P.

(C)
$$\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$$
 are in A.P.

100.	For which of	the following	ordered pair	s (μ. δ).	the system	of linear	equations
100.	I OI WITHCIT OF	thic following	or acrea pair	3 (m. 0).	tile system	oi iii icai	Cydations

(4, 3)

$$x + 2y + 3z = 1$$

 $3x + 4y + 5z = \mu$
 $4x + 4y + 4z = \delta$

is inconsistent?

[2020]

- (A) (1, 0)
- (B)
- (C)

(4, 6)

(D)

(3, 4)

- 101. The number of all 3 x 3 matrices A, with entries from the set {-1, 0, 1} such that the sum of the diagonal elements of AA^T is 3, is _____.
- 102. The system of linear equations $\lambda x + 2y + 2z = 5$, $2\lambda x + 3y + 5z = 8$, $4x + \lambda y + 6z = 10$ has: [2020]
 - (A) No solution when $\lambda = 2$
- (B) Infinitely many solutions when $\lambda = 2$
- No solution when $\lambda = 8$ (C)
- (D) A unique solution when $\lambda = -8$
- If the matrices $A = \begin{bmatrix} \cdot & \cdot & \\ 1 & 3 & 4 \\ 1 & -1 & 3 \end{bmatrix}$, B = adjA and C = 3A, then $\frac{|adj B|}{|C|}$ is equal to: 103. [2020] (A)
- 104. Let *S* be the set of all $\lambda \in R$ for which the system of linear equations

2x - y + 2z = 2; $x - 2y + \lambda z = -4$; $x + \lambda y + z = 4$ has no solution. Then the set S:

[2020]

(A) Is an empty set (B) Contains more than two elements

(C) Is a singleton

- (D) Contains exactly two elements
- Let A be a 2×2 real matrix with entries from $\{0, 1\}$ and $|A| \neq 0$. Consider the following two statements: 105.
 - If $A \neq I_2$, then |A| = -1
 - (Q) If |A| = 1, then tr(A) = 2, where I_2 denotes 2×2 identity matrix and tr(A) denotes the sum of the diagonal entries of A. Then:
 - (A) (P) is false and (Q) is true
- (B) (P) is true and (Q) is false
- [2020]

- (C) Both (P) and (Q) are false
- (D) Both (P) and (Q) are true
- Let A be a 3×3 matrix such that $adj A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 0 & 2 \\ 1 & -2 & -1 \end{bmatrix}$ and B = adj (adj A). If $|A| = \lambda$ and $|(B^{-1})^T| = \mu$, then the ordered sale. 106.

then the ordered pair, (| λ |, μ) is equal to:

[2020]

- **(B)** $\left(3, \frac{1}{81}\right)$ **(C)** (3, 81)
- 107. Let S be the set of all integer solutions, (x, y, z), of the system of equations

$$x - 2y + 5z = 0$$

$$-2x + 4y + z = 0$$

$$-7x + 14y + 9z = 0$$

Such that $15 \le x^2 + y^2 + z^2 \le 150$. Then the number of elements in the set S is equal to _____. [2020]

Date Planned ://	Daily Tutorial Sheet - 8	Expected Duration: 90 Min
Actual Date of Attempt : / /	JEE Main (Archive)	Exact Duration :

108. If
$$\Delta = \begin{vmatrix} x-2 & 2x-3 & 3x-4 \\ 2x-3 & 3x-4 & 4x-5 \\ 3x-5 & 5x-8 & 10x-17 \end{vmatrix} =$$

[2020]

-3

 $Ax^3 + Bx^2 + Cx + D$, then B + C is equal to: **(A)** 1 **(B)** -1

(C) **109.** Let $A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$, $x \in R$ and $A^4 = [a_{ij}]$. If $a_{11} = 109$, then a_{22} is equal to _____. [2020]

If $A = \begin{bmatrix} \cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta \end{bmatrix}$, $\left(\theta = \frac{\pi}{24}\right)$ and $A^5 = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, where $i = \sqrt{-1}$, then which one of the following is not [2020]

 $a^2 - b^2 = \frac{1}{2}$ (B) $0 \le a^2 + b^2 \le 1$ (C) $a^2 - d^2 = 0$ (D) $a^2 - c^2 = 1$ (A)

111. If the system of equations

$$x - 2y + 3z = 9$$

$$2x + y + z = b$$

x - 7y + az = 24, has infinitely many solutions, then a - b is equal to _____. [2020]

If the system of equations 112.

$$x + y + z = 2$$

$$2x + 4y - z = 6$$

$$3x + 2y + \lambda z = \mu$$

Has infinitely many solutions, then:

[2020]

 $\lambda + 2\mu = 14$

- $\lambda 2\mu = -5$
- Suppose the vector x_1, x_2 and x_3 are the solutions of the system of linear equations, Ax = b when the vector b on the right side is equal to b_1, b_2 and b_3 respectively. If

(C)

 $x_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, x_{2} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}, x_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, b_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, b_{2} = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \text{ and } b_{3} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \text{ then the determinant of A is equal to :}$ **(A)** 4 **(B)** $\frac{3}{2}$ **(C)** $\frac{1}{2}$ **(D)** 2 [2020]

113.

(D)

- Let $\lambda \in R$. The system of linear equations $2x_1 4x_2 + \lambda x_3 = 1$, $x_1 6x_2 + x_3 = 2$, $\lambda x_1 10x_2 + 4x_3 = 3$ is 114. inconsistent for: [2020]
 - (A) exactly two values of $\,\lambda$
- (B) every value of λ

 $2\lambda + \mu = 14$

- exactly one negative value of λ
- (D) exactly one positive value of λ
- If the system of linear equations 115.

$$x + y + 3z = 0$$

$$x + 3v + k^2z = 0$$

$$3x + y + 3z = 0$$

has a non-zero solution (x, y, z) for some $k \in R$, then $x + \left(\frac{y}{z}\right)$ is equal to : [2020]

- (A) -9
- (B) 3
- (C) -3
- 9 (D)

116. If a + x = b + y = c + z + 1, where a, b, c, x, y, z are non-zero distinct real numbers, then $\begin{vmatrix} x & a + y & x + a \\ y & b + y & y + b \\ z & c + y & z + c \end{vmatrix}$

is equal to:

- **(A)** 0
- **(B)** y(a-c)
- (C) y(b a)
- **(D)** y(a b)
- [2020]

117. Let m and M be respectively the minimum and maximum values of

$$\begin{vmatrix} \cos^2 x & 1 + \sin^2 x & \sin 2x \\ 1 + \cos^2 x & \sin^2 x & \sin 2x \\ \cos^2 x & \sin^2 x & 1 + \sin 2x \end{vmatrix}$$

Then the ordered pair (m, M) is equal to:

[2020]

- **(A)** (-3, 3)
- **(B)** (-4, -1)
- **(C)** (-3, -1)
- **(D)** (1, 3)
- **118.** The values of λ and μ for which the system of linear equations

$$x+y+z=2$$

$$x + 2y + 3z = 5$$

$$x + 3y + \lambda z = \mu$$

has infinitely many solution are, respectively:

[2020]

- **(A)** 5 and 7
- **B)** 5 and 8
- c) 6 and 8
- **(D)** 4 and 9
- **119.** Let $\theta = \frac{\pi}{5}$ and $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$. If $B = A + A^4$, then $\det(B)$:

[2020]

- **(A)** lies in (1, 2) **(B)**
 - (B) is zero
- (C) lies in (2, 3)
- (D) is one
- 120. The sum of distinct values of λ for which the system of equations

$$(\lambda - 1)x + (3\lambda + 1)y + 2\lambda z = 0$$

$$(\lambda - 1)x + (4\lambda - 2)y + (\lambda + 3)z = 0$$

$$2x + (3\lambda + 1)y + 3(\lambda - 1)z = 0$$

has non-zero solutions, is_____.

[2020]

121. Let $a,b,c \in R$ be all non-zero and satisfy $a^3 + b^3 + c^3 = 2$. If the matrix

$$A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}$$

Satisfies $A^T A = I$, then a value of *abc* can be:

[2020]

- (A) $\frac{1}{3}$
- (B)
- (c) $-\frac{1}{3}$
- **(D)** $\frac{2}{3}$
- **122.** Let $A = \left\{ X = \left(x, y, z \right)^T : PX = 0 \text{ and } x^2 + y^2 + z^2 = 1 \right\}$, where $P = \begin{bmatrix} 1 & 2 & 1 \\ -2 & 3 & -4 \\ 1 & 9 & -1 \end{bmatrix}$ then the set A: **[2020]**
 - (A) is an empty set

- **(B)** contains more than two elements
- **(C)** contains exactly two elements
- (D) is a singleton

No real values

Matrices and Determinants

Date Planned : / /	Daily Tutorial Sheet - 1	Expected Duration : 90 Min
Actual Date of Attempt : / /	JEE Advanced (Archive)	Exact Duration :

1.	If A and	d B are square m	natrices of	f equal degree, [.]	then whic	ch one is correct	among t	he following?	(1995)
	(A)	A+B=B+A	(B)	A+B=A-B	(C)	A - B = B - A	(D)	AB = BA	

2. If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix}$$
, $6A^{-1} = A^2 + cA + dI$, then (c, d) is: (2005)

(A)
$$(-6, 11)$$
 (B) $(-11, 6)$ (C) $(11, 6)$ (D) $(6, 11)$
3. If $P = \begin{bmatrix} \sqrt{3}/2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $Q = PAP^T$ then $P^TQ^{2005}P$ is: (2005)

(A)
$$\begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$$
 (B) $\begin{bmatrix} 1 & 2005 \\ 2005 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 0 \\ 2005 & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

4. If
$$A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$, then value of α for which $A^2 = B$, is:

Let $P = [a_{ij}]$ be a 3×3 matrix and let $Q = [b_{ij}]$, where $b_{ij} = 2^{i+j}a_{ij}$ for $1 \le i$, $j \le 3$. If the determinant of P 5. [2012] is 2, then the determinant of the matrix Q is:

(A)
$$2^{10}$$
 (B) 2^{11} (C) 2^{12} (D) 2^{13}
6. If $A = \begin{bmatrix} \alpha & 2 \\ 2 & \alpha \end{bmatrix}$ and $|A^3| = 125$, then the value of α is: (2004)

- (D) sin x cos x cos x
- The number of distinct real roots of $\left|\cos x + \sin x + \cos x\right| = 0$ in the interval $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$ is: 7. (2001) $\cos x \cos x \sin x$ (A) (C) (D)

8. If
$$f(x) = \begin{vmatrix} 1 & x & x+1 \\ 2x & x(x-1) & (x+1)x \\ 3x(x-1) & x(x-1)(x-1) & (x+1)x(x-1) \end{vmatrix}$$
, then $f(100)$ is equal to: (1999)
(A) 0 (B) 1 (C) 100 (D) -100

9. The parameter on which the value of the determinant
$$\begin{vmatrix} 1 & a & a^2 \\ \cos(p-d)x & \cos px & \cos(p+d)x \\ \sin(p-d)x & \sin px & \sin(p+d)x \end{vmatrix}$$
 does not depend

$$\left|\sin(p-d)x \sin px \sin(p+d)x\right|$$
 upon, is:
$$\left|\sin(p-d)x \sin px \sin(p+d)x\right|$$

(A) a (B) p (C) d (D) x

10. The determinant
$$\begin{vmatrix} xp + y & x & y \\ yp + z & y & z \\ 0 & xp + y & yp + z \end{vmatrix} = 0$$
, if (1997)

(A) x, y, z are in AP (B) x, y, z are in GP (C) x, y, z are in HP (D) xy, yz, zx are in AP

(A)
$$x,y,z$$
 are in AP (B) x,y,z are in GP (C) x,y,z are in HP (D) xy,yz,zx are in AP

-100

Date Planned : / /	Daily Tutorial Sheet - 2	Expected Duration: 90 Min
Actual Date of Attempt : / /	JEE Advanced (Archive)	Exact Duration :

Actu	al Date	of Attempt : /	'_'_	JEE A	Advanced (A	Archive)		xact Duration:	
11.	consis	ting of all deter					-	oe the subset of of all determina	nts with
		-1. Then:							(1981
	(A)	C is empty			(B)	B has as m	-		
	(C)	$A = B \cup C$			(D)	B has twice	as many e	lements as C	
12.	If A is	3×3 non-singu	ular matr	ix such that	$AA^T = A^TA$	and $B = A^{-1}$	A^T , then	BB^T is equal to:	(2014
	(A)	I + B	(B)	1	(C)	B^{-1}	(D)	$(B^{-1})^T$	
13.						_	spose of P	and I is the 3×	3 identit
	matrix	α, then there exi	sts a colu	umn matrix,	$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	such that			(2012
	(A)	$PX = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	(B)	PX = X	(C)	PX = 2X	(D)	PX = -X	
14.	Let ω	≠1 be a cube i	oot of ur	nity and s be	the set of a	all non-singu	lar matrice	s of the form	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	where	each of a, b an	d c is eith	ner ωor ω ² , Τ	hen, the nu	mber of disti	nct matrice	s in the set S is	: (2011
	(A)	2	(B)	6	(C)	4	(D)	8	
15.	Let M	and N be two 3	x3 non-	singular skev	v-symmetric	: matrices su	ch that MN	$I = NM$. If P^T c	lenotes th
		oose of P, then I							(2011
	(A)	м ²	(B)	$-N^2$			(D)	A 4A I	(=0.1
	(A)	IVI	(D)	-/V	(C)	-IVI	(D)	<i>MN</i>] [4]
16.	The n	umber of 3×3 r	matrices <i>i</i>	A whose entri	es are eithe	r 0 or 1 and 1	for which tl	ne system $A\begin{bmatrix} x \\ y \\ z \end{bmatrix}$	1 1 - 1
	exactl	y two distinct so	olutions,	is:					(2010)
	(A)	0	(B)	2 ⁹ –1	(C)	168	(D)	2	
17.	given,	2x - y + 2z = 2	x-2y+	z = -4, $x + y +$	$\lambda z = 4$, the	n the value o	fλ such th	nat the given sys	stem of
		ons has no solu		,				3 3	(2004
	(A)	3	(B)	1	(C)	0	(D)	-3	,

- 18. The number of values of k for which the system of equations (k+1)x + 8y = 4k and kx + (k+3)y = 3k 1 has infinitely many solutions, is/are: (2002)
 - **(A)** 0
- (B)
- (C) 2
- (D)
- 19. If the system of equations x ky z = 0, kx y z = 0, x + y z = 0 has a non-zero solution, then possible values of k are: (2000)
 - **(A)** -1, 2
- (B)

1, 2

- **(C)** 0, 1
- **(D)** -1, 1

Assertion and Reason

For the following questions, choose the correct answer from the codes (a), (b), (c) and (d) defined as follows:

- (A) Statement I is true, Statement II is also true; Statement II is the correct explanation of Statement I
- (B) Statement I is true, Statement II is also true; Statement II is not the correct explanation of Statement I
- (C) Statement I is true; Statement II is false.
- (D) Statement I is false; Statement II is true.
- **20.** Consider the system of equation x 2y + 3z = -1, x 3y + 4z = 1 and -x + y 2z = k

Statement I: The system of equations has no solution for $k \neq 3$ and

Statement II : The determinant $\begin{vmatrix} 1 & 3 & -1 \\ -1 & -2 & k \\ 1 & 4 & 1 \end{vmatrix} \neq 0 \text{ for } k \neq 0.$ (2008)

21. Let $P = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{bmatrix}$ and I be the identity matrix of order 3. If $Q = \begin{bmatrix} q_{ij} \end{bmatrix}$ is a matrix such that $P^{50} - Q = I$,

then $\frac{q_{31} + q_{32}}{q_{21}}$ equals :

- (A)
- 52
- **(B)** 103
- **(C)** 201
- **(D)** 205

(D)

57

-										
Date Planned : / /					Daily Tutorial	Sheet - 3	E	Expected Duration : 90 Min		
Actual Date of Attempt : / /					JEE Advanced (Archive) Exact Duration :			ation:		
22.	How	many 3×3	matrices M	with entr	ies from $\{0,$	1, 2 $\}$ are the	ere, for which	h the sum	of the diagonal	
	entri	es of $M^T M$ i	s 5 ?						\odot	
	(A)	126	(B)	198	(C)	162	(D)	135	•	

		3			()			· ·
	entries	s of $M^T M$ is	5?						$oldsymbol{\mathbb{E}}$
	(A)	126	(B)	198	(C)	162	(D)	135	
*23.	For 3	×3 matrices	M and N, w	hich of the f	following state	ement(s) is/	are not corre	ect?	(2013)
	(A)	N^TMN is	symmetric	or skew-syn	nmetric, acco	rding as <i>M</i> i	s symmetric	or skew-	symmetric
	(B)	MN-NM	is symmetri	c for all sym	nmetric matri	ces M and Λ	1		
	(C)	M N is syn	nmetric for	all symmetri	ic matrices <i>M</i>	and N			
	(D)	(adj M)(ad	lj N) = adj(M	N) for all in	vertible matri	ces M and M	I		
*24.	Let M	and N be two	o 3×3 mati	rices such th	nat <i>MN = NM</i>	. Further, i	$f M \neq N^2$ an	$d M^2 = I$	N ⁴ , then:

24.	Let IVI a	and N be two 3×3 matrices such that $MN=NM$. Further, if $M\neq N^2$ and $M^2=$	N', then:
	(A)	determinant of $(M^2 + MN^2)$ is 0	(2014)
	(B)	there is a 3×3 non-zero matrix U such that $(M^2 + MN^2)$ U is zero matrix	
	(C)	determinant of $(M^2 + MN^2) > 1$	

for a 3×3 matrix U, if $(M^2 + MN^2)U$ equals the zero matrix, then U is the zero matrix Let ω be a complex cube root of unity with $\omega \neq 0$ and $P = [p_{ij}]$ be an $n \times n$ matrix with $p_{ij} = \omega^{i+j}$. Then *25. $p^2 \neq 0$ when *n* is equal to:

(A) 57 (B) 55 (C) 58 (D) 56

*26. The determinant
$$\begin{vmatrix} a & b & a\alpha + b \\ b & c & b\alpha + c \\ a\alpha + b & b\alpha + c & 0 \end{vmatrix}$$
 is equal to zero, then: (1986)

- (A) a,b, c are in GP a,b, c are in AP (B)
 - $(x \alpha)$ is a factor of $ax^2 + 2bx + c$ (C) a,b, c are in HP (D)
- *27. Let M be a 2×2 symmetric matrix with integer entries. Then, M is invertible, if: (2014)the first column of M is the transpose of the second row of M
 - (B) the second row of M is the transpose of the first column of M
 - (C) M is a diagonal matrix with non-zero entries in the main diagonal
 - (D) the product of entries in the main diagonal of M is not the square of an integer
- If the adjoint of a 3×3 matrix P is $\begin{bmatrix} 2 & 1 & 7 \end{bmatrix}$, then the possible value(s) of the determinant of P *28. 1 1 3

(2014)is/are:

- non-zero, symmetric matrix. Then which of the following matrices is (are) skew symmetric? $Y^3 Z^4 - Z^4 Y^3$ (B) $X^4Z^3 - Z^3X^4$ (D) $X^{44} + Y^{44}$ (C) (A)
- $|(1 + \alpha)^2 (1 + 2\alpha)^2 (1 + 3\alpha)^2|$ Which of the following vales of α satisfy the equation $\left|(2+\alpha)^2\right| (2+2\alpha)^2 = -648 \alpha$? $(3 + \alpha)^2 (3 + 2\alpha)^2 (3 + 3\alpha)^2$
- *30. (A) (C) **-**4 (B) (D)

Date Planned : / /	Daily Tutorial Sheet - 4	Expected Duration : 90 Min
Actual Date of Attempt : / /	JEE Advanced (Archive)	Exact Duration :

Let $P = \begin{bmatrix} 2 & 0 & \alpha \\ 3 & -5 & 0 \end{bmatrix}$, where $\alpha \in \mathbb{R}$. Suppose $Q = \begin{bmatrix} q_{ij} \end{bmatrix}$ is a matrix such that PQ = kI, where $k \in \mathbb{R}$, $k \neq 0$ *31.

and I the identity matrix of order 3. If $q_{23} = \frac{-k}{8}$ and $\det(Q) = \frac{k^2}{2}$, then :

 $\alpha = 0, k = 8$

(C) $det(P adj(Q)) = 2^9$

- **(D)** $\det(Q \ adj(P)) = 2^{13}$
- *32. Let $a, \lambda, \mu \in R$. Consider the system of linear equations $ax + 2y = \lambda$, $3x - 2y = \mu$ Which of the following statement(s) is(are) correct?
 - If a = -3, then the system has infinitely many solutions for all values of λ and μ (A)
 - (B) If $a \neq -3$, then the system has a unique solution for all values of λ and μ
 - If $\lambda + \mu = 0$, then the system has infinitely many solutions for a = -3(C)
 - (D) If $\lambda + \mu \neq 0$, then the system has no solution for a = -3
- *33. Which of the following is (are) NOT the square of a 3 × 3 matrix with real entries?

(A)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

- $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \qquad \textbf{(B)} \qquad \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \qquad \textbf{(C)} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \textbf{(D)} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
- Let *S* be the set of all column matrices $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ such that $b_1, b_2, b_3 \in \mathbb{R}$ and the system of equations (in real *34.

variables) $-x + 2y + 5z = b_1$, $2x - 4y + 3z = b_2$, $x - 2y + 2z = b_3$

has at least one solution. Then, which of the following system(s) (in real variables) has(have) at least one

solution for each $\begin{vmatrix} b_1 \\ b_2 \\ b_3 \end{vmatrix} \in S$?

- $x + 2y + 3z = b_1$, $4y + 5z = b_2$ and $x + 2y + 6z = b_3$ (A)
- $x + y + 3z = b_1$, $5x + 2y + 6z = b_2$ and $-2x y 3z = b_3$
- (C) $-x + 2y 5z = b_1$, $2x 4y + 10z = b_2$ and $x 2y + 5z = b_3$
- $x + 2y + 5z = b_1$, $2x + 3z = b_2$ and $x + 4y 5z = b_3$
- Let $M = \begin{bmatrix} \sin^4 \theta & -1 \sin^2 \theta \\ 1 + \cos^2 \theta & \cos^4 \theta \end{bmatrix} = \alpha I + \beta M^{-1}$, where $\alpha = \alpha(\theta)$ and $\beta = \beta(\theta)$ are real numbers, and I is the 35.

 2×2 identity matrix. If α^* is the minimum of the set $\{\alpha(\theta) : \theta \in [0, 2\pi)\}$ and β^* is the minimum of the set $\{\beta(\theta): \theta \in [0,2\pi)\}$. Then the value of $\alpha^* + \beta^*$ is :

- (A)
- (C) $-\frac{29}{16}$
- (D)

*36. Let
$$M = \begin{bmatrix} 0 & 1 & a \\ 1 & 2 & 3 \\ 3 & b & 1 \end{bmatrix}$$
 and $adj M = \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix}$

Where a and b are real numbers. Which of the following options is/are correct?

(A) If
$$M\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, then $\alpha - \beta + \gamma = 3$ (B) $(adj M)^{-1} + adj M^{-1} = -M$

(B)
$$(adj M)^{-1} + adj M^{-1} = -M$$

(C)
$$a+b=3$$

(D)
$$\det (adj M^2) = 81$$

*37. Let
$$P_1 = I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, $P_3 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$P_{4} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \ P_{5} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \ P_{6} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \text{ and } X = \sum_{k=1}^{6} P_{k} \begin{bmatrix} 2 & 1 & 3 \\ 1 & 0 & 2 \\ 3 & 2 & 1 \end{bmatrix} P_{k}^{T}$$

where P_k^T denotes the transpose of the matrix P_k . Then which of the following options is(are) correct ?

- (A) The sum of diagonal entries of X is 18
- (B) X is a symmetric matrix
- X 30I is an invertible matrix (C)
- If $X \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} = \alpha \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix}$, then $\alpha = 30$

*38. Let
$$x \in \mathbb{R}$$
 and let $P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$, $Q = \begin{bmatrix} 2 & x & x \\ 0 & 4 & 0 \\ x & x & 6 \end{bmatrix}$ and $R = PQP^{-1}$.

Then which of the following options is(are) correct?

- For x = 0, if $R\begin{bmatrix} 1 \\ a \\ b \end{bmatrix} = 6\begin{bmatrix} 1 \\ a \\ b \end{bmatrix}$, then a + b = 5(A)
- $\det R = \det \begin{bmatrix} 2 & x & x \\ 0 & 4 & 0 \\ x & x & 5 \end{bmatrix} + 8 \text{, for all } x \in \mathbb{R}$ (B)
- For x = 1, there exists a unit vector $\alpha \hat{i} + \beta \hat{i} + \gamma \hat{k}$ for which $R \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ (C)
- (D) There exists a real number x such that PQ = QP
- For positive numbers x, y and z, the numerical value of the determinant $\begin{vmatrix} 1 & \log_x y & \log_x z \\ \log_y x & 1 & \log_y z \end{vmatrix}$ is...... 39. (1993)

40. The value of the determinant
$$\begin{vmatrix} 1 & a & a^2 - bc \\ 1 & b & b^2 - ca \\ 1 & c & c^2 - ab \end{vmatrix}$$
 is..... (1988)

Date Planned : / /	Daily Tutorial Sheet - 5	Expected Duration: 90 Min
Actual Date of Attempt : / /	JEE Advanced (Archive)	Exact Duration :

- Given that x = -9 is a root of $\begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix} = 0$, the other two roots are and 41. (1983)
- 42. (1981)
- The solution set of the equation $\begin{vmatrix} 1 & 4 & 20 \\ 1 & -2 & 5 \\ 1 & 2x & 5x^2 \end{vmatrix} = 0 \text{ is}$ Let $p\lambda^4 + q\lambda^3 + r\lambda^2 + s\lambda + t = \begin{vmatrix} \lambda^2 + 3\lambda & \lambda 1 & \lambda + 3 \\ \lambda + 1 & -2\lambda & \lambda 4 \\ \lambda 3 & \lambda + 4 & 3\lambda \end{vmatrix}$ be an identity in λ , where p, q, r, s and t are

constants. Then, the value of *t* is (1981)

Let k be a positive real number and let $A = \begin{bmatrix} 2k-1 & 2\sqrt{k} & 2\sqrt{k} \\ 2\sqrt{k} & 1 & -2k \\ -2\sqrt{k} & 2k & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 2k-1 & \sqrt{k} \\ 1-2k & 0 & 2\sqrt{k} \\ -\sqrt{k} & -2\sqrt{k} & 0 \end{bmatrix}$ 44.

If $det(adjA) + det(adjB) = 10^6$, then [k] is equal to (2010)

- 45. The system of equations $\lambda x + y + z = 0$, $-x + \lambda y + z = 0$ and $-x - y + \lambda z = 0$ will have a non-zero solution, if real values of λ are given by...
- Let M be a 3×3 matrix satisfying $M \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$, $M \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$, and $M \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 12 \end{bmatrix}$, then the sum of the 46. diagonal entries of M is (2011)
- Let $z = \frac{-1 + \sqrt{3}i}{2}$, where $i = \sqrt{-1}$, and $r, s \in \{1, 2, 3\}$. Let $P = \begin{bmatrix} (-z)^r & z^{2s} \\ z^{2s} & z^r \end{bmatrix}$ and I be the identity matrix of 47. order 2. Then the total number of ordered pairs (r, s) for which $P^2 = -I$ is ______.
- The total number of distinct $x \in R$ for which $\begin{vmatrix} x & x^2 & 1+x^3 \\ 2x & 4x^2 & 1+8x^3 \\ 3x & 9x^2 & 1+27x^3 \end{vmatrix} = 10 \text{ is } \underline{\qquad}.$ 48.
- For a real number α , if the system $\begin{bmatrix} 1 & \alpha & \alpha^2 \\ \alpha & 1 & \alpha \\ \alpha^2 & \alpha & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ of linear equations, has infinitely many 49. solutions, then $1 + \alpha + \alpha^2 =$
- 50. Let P be a matrix of order 3×3 such that all the entries in P are from the set $\{-1, 0, 1\}$. Then, the maximum possible value of the determinant of P is _____.

Date Planned : / /	Daily Tutorial Sheet - 6	Expected Duration : 90 Min
Actual Date of Attempt : / /	JEE Advanced (Archive)	Exact Duration :

Paragraph for Questions 51 - 53

(2011)

Let a, b and c be three real numbers satisfying $\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} a & b$

- If the point P(a,b,c), with reference to Eq.(i), lies on the plane 2x + y + z = 1, then the value of 7a+b+c is: 51.

- Let b=6, with a and c satisfying Eq.(i). If α and β are the roots of the quadratic equation 52.

$$ax^2 + bx + c = 0$$
, then $\sum_{n=0}^{\infty} \left(\frac{1}{\alpha} + \frac{1}{\beta}\right)^n$ is equal to:

- **(C)** 6/7
- (D)
- Let ω be a solution of $x^3-1=0$ with $Im(\omega)>0$. If a=2 with b and c satisfying Eq.(i) then the value of 53.
- (C)

Paragraph for Questions 54 - 56

(2010)

Let p be an odd prime number and T_p be the set of 2×2 matrices $T_p = \left\{ A = \begin{bmatrix} a & b \\ c & a \end{bmatrix} \right\}$; $a, b, c \in \{0, 1, 2, ..., p-1\}$

- 54. The number of A in T_p such that det(A) is not divisible by p, is:
- $p^{3} 5p$
- (C) $p^3 3p$
- **(D)** $p^3 p^2$
- The number of A in T_p such that the trace of A is not divisible by p but det(A) is divisible by p is: 55.
- $(p-1)(p^2-p+1)$ **(B)** $p^3-(p-1)^2$ **(C)** $(p-1)^2$
- **(D)** $(p-1)(p^2-2)$
- The number of A in T_p such that A is either symmetric or skew-symmetric or both and det(A) is 56. divisible by p is: [Note: the trace of a matrix is the sum of its diagonal entries.]
- (B)
- 2(p-1)
- (C) $(p-1)^2+1$
- If M is a 3×3 matrix, where $M^T M = I$ and det(M) = 1, then prove that det(M-1) = 057. (2004)
- If matrix $A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$, where a, b, c are real positive numbers, abc = 1 and $A^T A = I$, then find the 58.

value of $a^3 + b^3 + c^3$. (2003)

Let a, b, c be real numbers with $a^2 + b^2 + c^2 = 1$. Show that the equation 59.

$$\begin{vmatrix} ax - by - c & bx + ay & cx + a \\ bx + ay & -ax + by - c & cy + b \\ cx + a & cy + b & -ax - by + c \end{vmatrix} = 0$$
 represents a straight line. (2001)

Prove that for all value of θ $\sin\theta \qquad \cos\theta \qquad \sin 2\theta \\ \sin\left(\theta + \frac{2\pi}{3}\right) \quad \cos\left(\theta + \frac{2\pi}{3}\right) \quad \sin\left(2\theta + \frac{4\pi}{3}\right) = 0 \\ \sin\left(\theta - \frac{2\pi}{3}\right) \quad \cos\left(\theta - \frac{2\pi}{3}\right) \quad \sin\left(2\theta - \frac{4\pi}{3}\right) = 0$ 60. (2000)

Date Planned : / /	Daily Tutorial Sheet - 7	Expected Duration : 90 Min
Actual Date of Attempt : / /	JEE Advanced (Archive)	Exact Duration :

Suppose, f(x) is a function satisfying the following conditions: 61.

(1998)

- (a) f(0) = 2, f(1) = 1
- f has a minimum value at $x = \frac{5}{3}$, and (b)
- for all x, $f'(x) = \begin{vmatrix} 2ax & 2ax 1 & 2ax + b + 1 \\ b & b + 1 & -1 \\ 2(ax + b) & 2ax + 2b + 1 & 2ax + b \end{vmatrix}$ (c)

where a, b are some constants. Determine the constants a, b and the function f(x).

Find the value of the determinant $\begin{vmatrix} bc & ca & ab \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix}$, where a, b and c are respectively the p^{th} , q^{th} and r^{th} 62.

terms of a harmonic progression. (1997)

63. Let a > 0, d > 0. Find the value of the determinant

$$\frac{1}{a} \qquad \frac{1}{a(a+d)} \qquad \frac{1}{(a+d)(a+2d)} \\
\frac{1}{(a+d)} \qquad \frac{1}{(a+d)(a+2d)} \qquad \frac{1}{(a+2d)(a+3d)} \\
\frac{1}{(a+2d)} \qquad \frac{1}{(a+2d)(a+3d)} \qquad \frac{1}{(a+3d)(a+4d)}$$
(1997)

64. For all values of A, B, C and P, Q, R, show that (1994)

- $\begin{vmatrix} \cos(A-P) & \cos(A-Q) & \cos(A-R) \\ \cos(B-P) & \cos(B-Q) & \cos(B-R) \\ \cos(C-P) & \cos(C-Q) & \cos(C-R) \end{vmatrix} = 0$
- For fixed positive integer n, if $D = \begin{vmatrix} n! & (n+1)! & (n+2)! \\ (n+1)! & (n+2)! & (n+3)! \\ (n+2)! & (n+3)! & (n+4)! \end{vmatrix}$ then show that $\left[\frac{D}{(n!)^3} 4\right]$ is divisible by n. 65.

- If $a \neq p$, $b \neq q$, $c \neq r$ and $\begin{vmatrix} p & b & c \\ a & q & c \\ a & b & r \end{vmatrix} = 0$. Then, find the value of $\frac{p}{p-a} + \frac{q}{q-b} + \frac{r}{r-c}$ (1991)
- 67. Let the three digit numbers A28, 3B9 and 62C, where A, B and C are integers between 0 and 9, be divisible by a fixed integer k. Show that the determinant $\begin{vmatrix} A & 3 & 6 \\ 8 & 9 & C \\ 2 & B & 2 \end{vmatrix}$ is divisible by k.

68. Let
$$\Delta_a = \begin{vmatrix} a-1 & n & 6 \\ (a-1)^2 & 2n^2 & 4n-2 \\ (a-1)^3 & 3n^3 & 3n^2-3n \end{vmatrix}$$
. Show that $\sum_{a=1}^n \Delta_a = c \in \text{constant}$. (1989)

69. Show that
$$\begin{vmatrix} {}^{x}C_{r} & {}^{x}C_{r+1} & {}^{x}C_{r+2} \\ {}^{y}C_{r} & {}^{y}C_{r+1} & {}^{y}C_{r+2} \\ {}^{z}C_{r} & {}^{z}C_{r+1} & {}^{z}C_{r+2} \end{vmatrix} = \begin{vmatrix} {}^{x}C_{r} & {}^{x+1}C_{r+1} & {}^{x+2}C_{r+2} \\ {}^{y}C_{r} & {}^{y+1}C_{r+1} & {}^{y+2}C_{r+2} \\ {}^{z}C_{r} & {}^{z+1}C_{r+1} & {}^{z+2}C_{r+2} \end{vmatrix}$$
(1985)

If α be a repeated root of a quadratic equation f(x) = 0 and A(x), B(x) and C(x) be polynomials of 70. degree 3, 4 and 5 respectively, then show that:

$$A(x)$$
 $B(x)$ $C(x)$
 $A(\alpha)$ $B(\alpha)$ $C(\alpha)$ is divisible by $f(x)$, where prime denotes the derivatives. (1984) $A(\alpha)$ $B(\alpha)$ $C(\alpha)$

Without expanding a determinant at any stage, show that: $\begin{vmatrix} x^2 + x & x+1 & x-2 \\ 2x^2 + 3x - 1 & 3x & 3x - 3 \\ x^2 + 2x + 3 & 2x - 1 & 2x - 1 \end{vmatrix} = xA + B$ 71. (1982)

Where A and B are determinants of order 3 not involving x.

Date Planned : / /	Daily Tutorial Sheet - 8	Expected Duration : 90 Min
Actual Date of Attempt : / /	JEE Advanced (Archive)	Exact Duration :

72. Let a, b, c be positive and not all equal. Show that the value of the determinant $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$ is negative.

(1981)

73. $A = \begin{bmatrix} a & 0 & 1 \\ 1 & c & b \\ 1 & d & b \end{bmatrix}, B = \begin{bmatrix} a & 1 & 1 \\ 0 & d & c \\ f & g & h \end{bmatrix}, U = \begin{bmatrix} f \\ g \\ h \end{bmatrix}, V = \begin{bmatrix} a^2 \\ 0 \\ 0 \end{bmatrix}$

If there is a vector matrix X, such that AX = U has infinitely many solutions, then prove that BX = V cannot have a unique solution. If $a \neq 0$. Then, prove that BX = V has no solution. (2004)

74. Let λ and α be real. Find the set of all values of λ for which the system of linear equations

$$\lambda x + (\sin \alpha)y + (\cos \alpha)z = 0$$

$$x + (\cos \alpha)y + (\sin \alpha)z = 0$$
 and $-x + (\sin \alpha)y - (\cos \alpha)z = 0$

has a non-trivial solution. For $\lambda=1$, find all values of α .

(1993)

- 75. Let α_1 , α_2 , β_1 , β_2 be the roots of $ax^2 + bx + c = 0$ and $px^2 + qx + r = 0$ respectively. If the system of equations $\alpha_1 y + \alpha_2 z = 0$ and $\beta_1 y + \beta_2 z = 0$ has a non-trivial solution, then prove that $\frac{b^2}{a^2} = \frac{ac}{pr}$. (1987)
- 76. Consider the system of linear equations in x, y, z $(\sin \theta)x y + z = 0 \text{ , } (\cos 2\theta)x + 4y + 3z = 0 \text{ and } 2x + 7y + 7z = 0$ Find the values of θ for which this system has non-trivial solution. (1986)
- 77. Show that the system of equations, 3x y + 4z = 3, x + 2y 3z = -2 and $6x + 5y + \lambda z = -3$ has at least one solution for any real number $\lambda \neq -5$. Find the set of solutions, if $\lambda = -5$. (1983)
- 78. For what values of m, does the system of equations 3x + my = m and 2x 5y = 20 has a solution satisfying the conditions x > 0, y > 0? (1979)
- 79. For what value of k, does the following system of equations possess a non-trivial solution over the set of rationals x + y 2z = 0, 2x 3y + z = 0 and x 5y + 4z = k. Find all the solutions. (1979)
- **80.** Given, x = cy + bz, y = az + cx, z = bx + ay, where x, y, z are not all zero, prove that $a^2 + b^2 + c^2 + 2ab = 1$ (1978)
- 81. Let M be a 3×3 invertible matrix with real entries and let I denote the 3×3 identity matrix. If $M^{-1} = adj(adj M)$, then which of the following statement is/are ALWAYS TRUE? (2020)
 - (A) M = I (B) $\det M = I$ (C) $M^2 = I$ (D)
- 82. The trace of a square matrix is defined to be the sum of its diagonal entries. If A is a 2×2 matrix such that the trace of A is 3 and the trace of A^3 is -18, then the value of the determinant of A is _____. (2020)

 $(adj M)^2 = I$